
Course Overview

COS 316: Principles of Computer System Design

Lecture 2

Amit Levy & Ravi Netravali



Agenda

• Course staff introductions

• Why we like systems?

• Course structure and goals

• Schedule and grading

https://cos316.princeton.systems/



Course Staff: Intros

• Joined Princeton faculty in 2021

• Teach COS 316 and COS 561

• Research in networked systems

• Research goals

• ML for systems, systems for ML
• Improving distributed applications in 

terms of performance, debuggability, and 
deployability
• Edge Computing

Prof. Ravi Netravali
Instructor



Course Staff: Intros

Prof. Amit Levy
Instructor

• Joined Princeton faculty in 2018

• Often teaches COS 316

• Research in distributed and operating 

systems

• Systems building blocks for building an 

endless number of applications 

• Systems that allow developers to have 

the most flexibility and creativity

• … while being secure and performant



Course Staff: Intros

Leon Schuermann
TA

• 2nd year PhD student working with Amit

• Works on secure embedded OSes and 

hardware-software co-design

• Likes systems because of the challenges 

in finding practical solutions to cope 

with constraints in environments where 

apps run

• First time TAing a course



Course Staff: Intros

Yue Tan
TA

• 5th year PhD student working with Amit

• Works on building (more) secure 

systems, including for new compute 

paradigms, e.g., function-as-a-service

• Enjoy systems because it is challenging 

to develop principled large systems, but 

also rewarding since they better 

support current apps and enable new 

ones

• Has TAed for COS 316 and COS 418



Course Staff: Intros

Rui Pan
TA

• 2nd year PhD student working with Ravi

• Works on designing better systems and 

networks for machine learning

• Motivation: systems are the backbones 

for many apps that we all use, and small 

systems wins can make a big difference

• Inspired by undergrad OS class!
• Has tutored for intro CS classes



Course Staff: Intros

Chris Branner-Augmon
TA

• 2nd year PhD student working with Amit

• Works on consistency models for 

distributed databases

• Systems work is tangible: you can create 

what you design

• Especially rewarding to tease out 
mathematical explanations for why things 
behave the way they do

• Has TAed multiple networking, security, 

and math courses



Course Staff: Intros

Jingyuan (Leo) Chen
TA

• 2nd year PhD student working with Amit

• Interested in applying PL techniques to 

improve security, performance, and 

debuggability of complex systems

• Passionate about designing powerful 

but simple interfaces to help developers 

build and debug systems

• First time TAing



Course Staff: Intros

Yinwei Dai
TA

• 2nd year PhD student working with Ravi

• Works on the intersection of networked 

systems and data-intensive computing 

(ML, computer vision)

• Likes systems because of the challenges 

in creating robust/efficient solutions to 

complex problems

• Has TAed computer networks



Course Staff: Intros

Mike Wong
TA

• 3rd year PhD student working with Ravi

• Works on improving the performance 

and resource-efficiency of machine 

learning systems

• Enjoys the satisfaction of making the 

apps that people use daily more 

performant, dependable, and 

deployable

• Has TAed COS 561



Learning Objectives & Course Components

• System Design Principles
• Lectures
• Problem Sets
• Design assignment
• Final Project

• Skills (Practice)
• Precepts
• Programming Assignments
• Final Project



Learning Objectives: System Design Principles

•What is the field of systems?

• Learn to appreciate trade-offs in designing and building 
the systems you use.

• Get better at understanding how systems work.

• Learn to use systems better---write more 
efficient/secure/robust/etc. applications.



Lectures

•5 Major Themes
• Naming
• Layering
• Caching
• Concurrency
• Access Control



Lectures

• Try your best to attend (in person)
• Active thinking through concepts (you)
• Active calibration of teaching (us)

• Explore fundamental concepts, ways of thinking, 
cutting-edge systems/research



Problem Sets

• Focus on reinforcing and generalizing lecture content

•Done individually



Design Assignment

• Released today

• Builds on Lecture 1 (Netflix-like service), but at larger scale

• Writeup (600 word limit) + at least 1 *design* figure

• Will revisit this later in the course



Learning Objectives: Skills

• Go programming language

• Version control with git

•Working in groups

• "Systems programming": sockets programming, concurrency, 
modular design, unit testing, performance measurement, ...



Precepts

• Attend synchronously

• Hands on, active learning in small groups
• Bring your laptop!

• Coupled primarily with the programming assignments



Programming Assignments

• You’re Building a Web Framework!

• Set of libraries and tools for building sophisticated web applications

• Abstracts connection and protocol handling
• Routes requests to controllers/handlers
• Caching for common queries and computations
• Multiplexes concurrent access to databases
• Translates database objects into programming language constructs
• User authentication and authorization

• Examples: Rails, Django, Express, Apache Struts, Laravel



WARNING
Systems Building is not just Programming
• COS126 & 217 told you how to design & structure your 

programs.
• This class doesn’t.

• Poor (early) system design à much harder to get things right!
• Conversely, assignments won't require algorithms or data 

structures you're not already familiar with.
• Team-based assignments
• Discuss potential solutions before implementing

• Test-driven development



Assignments: Collaboration & Resources

• You can, and should any resources available on the Internet to 

complete assignments:

• Go documentation, Stackoverflow, open source projects
• Mailing lists, chat rooms, etc...
• Cite sources in your comments or README!

• You must collaborate (in groups of 2)

• Okay to share ideas/concepts (but not code) with other groups
• Take-a-walk rule:

• If you discuss the assignment with other teams, do something else for an 
hour before returning to your code

• You may not ask instructors for help debugging your code.



Assignments: Collaboration & Resources 
https://cos316.princeton.edu/assignments



Assignments: Submitting and Grading

• Submitting happens whenever you "push" to your "master" branch 
on GitHub
• Push as many times as you like (we encourage you to do so early and often)

• Grading is automatic and immediate
• No penalty for multiple submissions à we’ll use your higest graded 

submission (push)

• Each automatic grading is posted as a comment to the last commit of each 

push. It includes a break down of tests cases, including which failed.



Programming Assignment Late Days

• 7 late days total for the semester
• Granularity of 1 day

• 11:02pm on Wednesday is 1 day late
• 10:50pm on Thursday is 1 day late

• Assigned retroactively to give you the best possible overall 
grade
• We do this for you!



Late Days Example

1. Jordan submits assignment #1 on time, but can't figure out how to 

pass the last test case. Their grade so far for the assignment is 95%.

2. 7 days after the deadline, Jordan figures out how to pass the last 

test and submits late, getting 100%.

3. Months later... Jordan underestimates their workload and isn't able 

to submit assignment 4 until 7 days after the deadline, but passes 

all tests to get 100%.

4. We assign the late days to assignment 4, so that Jordan’s grade is 

95% + 100%, as opposed to 100% + 0%.



Final Project

• Open ended systems building project; groups of 2 or 3

• Later precepts and Lecture 14 will help you refine topic

• You design and build something you’re interested in!

• Small written component (< 2 pages)



What is Due When?

• 5 programming assignments; 5 problem sets
• Each is due on Wednesday at 11pm Princeton Time

• Due on different weeks

• Design writeups
• Initial one due next Wednesday (9/13)

• Final one due towards the end of the semester (date TBD)

• Final project is due on Dean’s Date at 5pm Princeton Time



Grading

• 50% - Programming Assignments (5 total, 10% each)

• 20% - Problem Sets (5 total, 4% each)

• 10% for design writeups (skewed mostly towards 2nd one)

• 20% - Final Project

• No curve anticipated
• Will not curve down (i.e., a 93% is an A no matter what)



Learning Objectives & Course Components

• System Design Principles
• Lectures – Attend Synchronously
• Problem Sets – one per module
• Design writeup – one at beginning, one at end of semester
• Final Project – You build something new

• Skills
• Precepts – Attend Synchronously
• Programming Assignments – 5 total
• Final Project – Due on Dean’s Date


