
Systems Programming
& Engineering

COS 316: Principles of Computer System Design

Lecture 3

Leon Schuermann

Agenda

1. Challenges in Real-World Systems Engineering

2. Version Control Systems

3. Continuous Integration

Systems Engineering Challenges

● Designing and building systems in large real-world projects is hard
○ Vast set of requirements
○ Constrained environments and resources
○ Complex layering models and abstractions

[1]: https://www.phoronix.com/news/Linux-Git-Stats-EOY2019

● Prominent example: the Linux kernel
○ (Amongst the) largest single software project(s)
○ > 27 Mio lines of code¹, developed in the open since 1991
○ In 2019, 74k individual changes contributed by > 4k individual contributors
○ Supports incredibly wide range of hardware (routers, mobile phones,

workstations, servers,...)
○ Extensive range of application interfaces

Even changes in smaller projects can be complex…

…

…

…

● Today, we introduce two systems which help with these challenges:

You will use both types of systems for the programming assignments!

Systems Engineering Challenges

● How do you develop and maintain a project…
○ that is too large to be developed by a single individual,
○ honoring new feature requests,
○ without breaking any existing users / subsystems,
○ sustainably, over a long period of time,
○ in an auditable way?

Distributed
Version Control

(git)

Continuous
Integration
(GitHub Actions)

● How do systems engineers solve these problems? They build systems, of course!

Version Control Systems

● Development rarely goes perfect
○ Introducing new bugs with changes over time
○ Deleting code believed to no longer be useful
○ External requirements change

● Version Control Systems track the state of a project over time

A Student’s Version Control “System”

2023-04-05_design_prompt.docx

2023-05-14_design_prompt.docx

2023-05-20_design_prompt.docx

2023-05-20-01_design_prompt.docx

initial_draft.docx

wip.pdf

final_submission.pdf

final_submission_2.pdf

final_draft_submission.pdf

final-final.pdf

Version Control Systems

● These version control schemes are not suitable for software projects

○ Revisions are taken automatically, or at arbitrary points in time
■ Do not track single (“atomic”) changes to a given project

○ No semantic information associated with versions
■ Which version was a certain bug introduced in?
■ Does a given version contain a feature / bug?

○ Linear version history
■ No support for separating concurrent work (e.g., by multiple developers)
■ Copies of a project/document cannot be automatically reconciled

Introducing git

● Created by Linus Torvalds (creator of Linux) in 2005
● Designed as a Version Control System (VCS) for the Linux kernel
● Very popular, but not the only VCS

(Mercurial, SVN, CVS, Perforce, darcs, Pijul, …)

● You will learn how git works across two lectures
○ A practical guide (this lecture)
○ A deep-dive into git’s underlying architecture (09/21, Prof. Levy)

git 101

● Git tracks content in a git repository
○ Let’s create one now!

leons@silicon ~/cos316-l03> mkdir cos316-repo

leons@silicon ~/cos316-l03> cd cos316-repo/

leons@silicon ~/c/cos316-repo> git init
Initialized empty Git repository in /home/leons/cos316-l03/cos316-repo/.git/

leons@silicon ~/c/cos316-repo (main)>

git 101

● Git tracks content in a git repository
○ Let’s create one now!

● A repository manages a given folder (i.e. your project’s root directory)

leons@silicon ~/c/cos316-repo (main)> git status
On branch main

No commits yet

nothing to commit (create/copy files and use "git add" to track)

leons@silicon ~/c/cos316-repo (main)> echo '
 package main

 import "fmt"

 func main() {
 fmt.Println("Hello World!")
 }
 ' > test.go

leons@silicon ~/c/cos316-repo (main)> go run test.go
Hello World!

leons@silicon ~/c/cos316-repo (main)> git status
On branch main

No commits yet

Untracked files:
 (use "git add <file>..." to include in what will be committed)
 main.go

nothing added to commit but untracked files present (use "git add" to track)

git 101

● Git tracks content in a git repository
○ Let’s create one now!

● A repository manages a given folder (i.e. your project’s root directory)

● Git tracks versions through commits
○ A commit is a snapshot of the repository directory
○ It only includes changes marked for inclusion

leons@silicon ~/c/cos316-repo (main)> git add main.go

leons@silicon ~/c/cos316-repo (main)> git status
On branch main

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: main.go

git 101

● Git tracks content in a git repository
○ Let’s create one now!

● A repository manages a given folder (i.e. your project’s root directory)

● Git tracks versions through commits
○ A commit is a snapshot of the repository directory
○ It only includes changes marked for inclusion

● git add adds a file to the “staging area”
○ The next commit will include whichever changes are staged
○ git add “freezes” the file version added to the staging area – let’s see this in action

leons@silicon ~/c/cos316-repo (main)> sed -i 's/World/COS316/g' main.go

leons@silicon ~/c/cos316-repo (main)> cat main.go
...
func main() {
 fmt.Println("Hello COS316!")
}

leons@silicon ~/c/cos316-repo (main)> git status
On branch main

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)
 new file: main.go

Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: main.go

main.go is added and modified!
The added version still prints “Hello
World!”, but the current in-tree
version prints “Hello COS316!”

git 101

● Let’s create our first commit!

● git commit records a snapshot of the entire repository
○ But only including the changes from the staging area

● Best practice: always check what you’re committing!
○ Use git diff --staged to view the currently staged changes
○ Use git diff to view changes not currently staged

leons@silicon ~/c/cos316-repo (main)> git diff --staged
diff --git a/main.go b/main.go
new file mode 100644
index 0000000..b1b14d0
--- /dev/null
+++ b/main.go
@@ -0,0 +1,7 @@
+package main
+
+import "fmt"
+
+func main() {
+ fmt.Println("Hello World!")
+}

leons@silicon ~/c/cos316-repo (main)> git diff
diff --git a/main.go b/main.go
index b1b14d0..d94cebf 100644
--- a/main.go
+++ b/main.go
@@ -3,5 +3,5 @@ package main
 import "fmt"

 func main() {
- fmt.Println("Hello World!")
+ fmt.Println("Hello COS316!")
 }

git 101

● Let’s create our first commit!

● git commit records a snapshot of the entire repository
○ But only including the changes from the staging area

● Best practice: always check what you’re committing!
○ Use git diff --staged to view the currently staged changes
○ Use git diff to view changes not currently staged

● Looking good? Use git commit to finalize your commit!
○ Record some semantic information with this change:

git commit -m “This is a commit message”

○ Writing good commit messages is it’s own science…

leons@silicon ~/c/cos316-repo (main)> git commit -m "Add Hello World
application"
[main (root-commit) fa93736] Add Hello World application
 1 file changed, 7 insertions(+)
 create mode 100644 main.go

leons@silicon ~/c/cos316-repo (main)> git status
On branch main
Changes not staged for commit:
 (use "git add <file>..." to update what will be committed)
 (use "git restore <file>..." to discard changes in working directory)
 modified: main.go

no changes added to commit (use "git add" and/or "git commit -a")

leons@silicon ~/c/cos316-repo (main)> git show
commit fa937364b216ce78a07356b096618fbf85eca523 (HEAD -> main)
Author: Leon Schuermann <leon@is.currently.online>
Date: Sun Sep 10 18:17:37 2023 -0400

Add Hello World application

diff --git a/main.go b/main.go
...

git 101

● Commits are identified by a 40-character “commit id”

[main (root-commit) fa937364] Add Hello World application

leons@silicon ~/c/cos316-repo (main)> git show
commit fa937364b216ce78a07356b096618fbf85eca523 (HEAD -> main)
Author: Leon Schuermann <leon@is.currently.online>
Date: Sun Sep 10 18:17:37 2023 -0400

Add Hello World application

● Prof. Levy’s lecture will go into the details of this naming scheme

git 101

● Let’s create a second commit!

● How does git know what changed in this commit?
○ git records the commit ids of the predecessor(s) of a commit

leons@silicon ~/c/cos316-repo (main)> git show --pretty=raw
commit 96758501677093f6ea8ce03f9debee0483e5f448
tree da837819f3f9b869299db74b932e88f136f667ae
parent fa937364b216ce78a07356b096618fbf85eca523

○ Creates a traversable version history, viewable with git log --graph

leons@silicon ~/c/cos316-repo (main)> git log --graph
* commit 96758501677093f6ea8ce03f9debee0483e5f448 (HEAD -> main)
| Author: Leon Schuermann <leon@is.currently.online>
| Date: Sun Sep 10 18:49:02 2023 -0400
|
| Make greeting more specific
|
* commit fa937364b216ce78a07356b096618fbf85eca523
 Author: Leon Schuermann <leon@is.currently.online>
 Date: Sun Sep 10 18:17:37 2023 -0400

 Add Hello World application

learngitbranching.js.org

https://learngitbranching.js.org/?NODEMO

Distributed Version Control with git

● git is a distributed version control system

● There can be many clones or copies of a repository
○ Sync commits, references, etc. between different copies

● Supports a fully decentralized workflow
○ No single “source of truth” server, as with e.g., Google docs
○ git works offline, without connection to a server or other clients

● Software forges (e.g., GitHub) provide git hosting
○ Just another (public) copy of your repository!

● Many different workflows for distributed git

Continuous Integration

● Automatic merges with git are great!
○ Enables working on features in parallel
○ Across multiple developers

● Merging codebases can break a system in subtle ways
○ E.g., you might rely on a function changed in a merged branch
○ Just because git does not detect a conflict, does not mean your program still works!

● This creates friction in the development process

Continuous Integration

● Continuous Integration (CI) is a development practice,
→ integrating contributions often (multiple times a day),
→ while building and testing automatically, on each merge.

git takes care of the “automatic integration” part!

● One such system: GitHub Actions
○ Allows running arbitrary commands in “the cloud” (in a VM)

● This course’s autograder is a “CI system”
○ Tests your code against a predefined set of test cases

(You can’t see the test cases though ☺)

Image CC BY-SA 4.0, Markus Meier

