Systems Programming
& Engineering

Bl ver | Nov (B
TES | TAM
f| EN | TvM |

COS 316: Principles of Computer System Design

Lecture 3

Leon Schuermann

Agenda

1. Challenges in Real-World Systems Engineering
2. Version Control Systems

3. Continuous Integration

Systems Engineering Challenges

e Designing and building systems in large real-world projects is hard
o Vast set of requirements
o Constrained environments and resources
o Complex layering models and abstractions

e Prominent example: the Linux kernel
o (Amongst the) largest single software project(s)
o > 27 Mio lines of code’, developed in the open since 1991
o In 2019, 74k individual changes contributed by > 4k individual contributors
o Supports incredibly wide range of hardware (routers, mobile phones,
workstations, servers,...)
o Extensive range of application interfaces

[1]: https://www.phoronix.com/news/Linux-Git-Stats-EOY2019

Even changes in smaller projects can be complex...

Tock 2.0: implement Callback swapping restrictions (v3) #2462

)@Y LG Ischuermann wants to merge 24 commits into master from tock2-callback-swap-prevention (0

Q) Conversation 81 o Commits 24 [l Checks o Files changed 114

O Ischuermann commented on Mar 3, 2021 « edited by hudson-ayers « Member ' +ee

Pull Request Overview

This pull request is a follow-up to #2282 and #2445. This was done jointly together with @hudson-ayers. Thanks Hudson!

Issue

Essentially, the protections introduced in this PR are required because in the Tock 2.0 system call architecture, with every call to
subscribe , the previous Callback provided by the application must be returned. If we were to not enforce any constraints here,
this would have serious side effects:

e a Callback subscribed by process A could be handed back to process B.
This leaks both the callback pointer and the appdata field of the Callback to another application.
e a Ccallback from one capsule could be given to another capsule and returned as part of a call to subscribe there.

e a Callback , passed to a driver under subscribe (subdriver) number x could be returned as part of a call to subscribe to
the same driver under subscribe (subdriver) number y , where x !=y .

« a capsule could pass back a null callback (with callback pointer and appdata being 0), where a process has actually
subscribed a callback with non-null values before.

All of these cases could cause inconsistencies and undefined behavior in userspace, if a process were to rely on the fact that
the returned callback is the one previously passed to the capsule.

Edit

<> Code ~

+1,943 -674 mmmE

Reviewers

§ alistair2s
9 hudson-ayers

¥ bradic

Assignees

6 alevy

Labels

ificant

kernel

Projects

None yet

Milestone

No milestone

Development

® 0 9&

&

Q_: brad]c commented on Mar 4, 2021 Member = s+«

1. So this doesn't prevent a capsule from returning the wrong callback, but rather it makes it possible for the core kernel to check
that the proper callback was returned?

2. Why is a capsule with two grants problematic? Is Kernel.grant_num_mapping only to prevent multiple grants in one capsule?

3. In my opinion needing the external macro crates is problematic.

(©)

. Ischuermann commented on Mar 4, 2021 « edited ~ Member ' Author ' s«

1. So this doesn't prevent a capsule from returning the wrong callback, but rather it makes it possible for the core kernel to
check that the proper callback was returned?

Yes. We thought about ways to do the entire check statically (e.g. through const generics, etc.) but ultimately couldn't find a way to
make that work. The compiler can only work with the type information it has, so pretty much every approach relying on this would
generate a bunch of types at compile time, require use of generics and monomorphisation would increase code size (if at all
possible).

2. Why is a capsule with two grants problematic?

We use the ProcessCallbackFactory in the grant initialization, whose purpose is to ensure that per (driver, process)
combination, no two Callbacks for the same subdriver number can be created. If there were to exist two Grant regions for a single
driver (which would produce a ProcessCallbackFactory two times), we can't enforce that invariant anymore, without not also
storing the ProcessCallbackFactory state per (driver, process) somewhere.

Is Kernel.grant_num_mapping only to prevent multiple grants in one capsule?
Yes.
3. In my opinion needing the external macro crates is problematic.
That's unfortunate, though not an issue. The only crate absolutely required to build macros is proc-macro , which is built by the

Rust compiler team (the compiler essentially "links" against that interface defined there, as procedural macros are extensions to

Jrvanwhy commented on Mar 8, 2021 Member | <+

+1 to Hudson's explanation. My shortened version is that yes we technically could make it the responsibility of the board main file,
but in practice it would be easy to make mistakes in the board main file if we do so.

©

bradjc commented on Mar 11, 2021 Member | +«+

OK next attempt.

What about having callback store a Option<DriverNum> ? The default callback created at initialization will have None . But, any
callback passed in will have Some(DriverNum) . If the same <process, driver, subscribe> is called again, then the DriverNum has
to match. For the first call to <process, driver, subscribe>, the driver number would be None and that would just match.

®

hudson-ayers commented on Mar 11, 2021 « edited by bradjc + Member | s«

OK next attempt.

What about having callback store a Option<DriverNum> ? The default callback created at initialization will have None . But,
any callback passed in will have Some(DriverNum) . If the same <process, driver, subscribe> is called again, then the
DriverNum has to match. For the first call to <process, driver, subscribe>, the driver number would be None and that would
just match.

That is pretty close to Leon's first approach. The problem is there is no way for the kernel to know the same <process, driver,
subscribe> has been called before. Even if it is only possible for trusted kernel code to modify the field containing
Option<DriverNum> , consider this scenario:

Capsule A and Capsule B each have 2 callbacks (subdriver num 0 and 1 for both). Thus there are 4 callbacks total: A0, A1, BO,
B1. These capsules have a reference to each other and cooperate maliciously with the goal of violating the kernel guarantees

Systems Engineering Challenges

e How do you develop and maintain a project...
that is too large to be developed by a single individual,
honoring new feature requests,

without breaking any existing users / subsystems,
sustainably, over a long period of time,

in an auditable way?

O O O O O

e How do systems engineers solve these problems? They build systems, of course!

e Today, we introduce two systems which help with these challenges:

Distributed Continuous
Version Control Integration
(git) (GitHub Actions)

You will use both types of systems for the programming assignments!

Version Control Systems

e Development rarely goes perfect

o Introducing new bugs with changes over time
o Deleting code believed to no longer be useful
o External requirements change

e \ersion Control Systems track the state of a project over time

A Student’s Version Control “System”

2023-04-05 design prompt.docx initial draft.docx
2023-05-14 design prompt.docx wip.pdf

2023-05-20 design prompt.docx final submission.pdf
2023-05-20-01 design prompt.docx final submission 2.pdf

final draft submission.pdf

final-final.pdf

google.com

& Today, 2:15 PM Version history

All versions v
= @ Fit > (IR Total: 2 edits AV

TODAY

Systems Engineering Challenges i Seper S, EIsEN

5 .urrent version

. . ® | eon Schuermann
. e How do you develop and maintain a project...

oped by a single individua

September 10, 2:15 PM
5 stainably. . ;“hb"vs't'\]:: @ Leon Schuermann
é in an auditable way?
e How do systems engineers solve these problems? They build systems, of course! September 10, 1:58 PM
3 _ _ _ ® Leon Schuermann
e Today, we introduce two systems which help with these challenges:
Distributed Continuous September 10, 1:57 PM
Version Control | Integration @ Leon Schuermann
7 (git) O (GitHub Actions)

Zyasetn Engrmenng Chabmges

You will use both types of systems for the programming assignments! September 10, 1:57 PM
® Leon Schuermann

Sentember 10. 1:57 PM

Show changes

Version Control Systems

e These version control schemes are not suitable for software projects

o Revisions are taken automatically, or at arbitrary points in time
m Do not track single (“atomic”) changes to a given project

o No semantic information associated with versions
m Which version was a certain bug introduced in?
m Does a given version contain a feature / bug?

o Linear version history
m No support for separating concurrent work (e.g., by multiple developers)
m Copies of a project/document cannot be automatically reconciled

Introducing git

git

e Created by Linus Torvalds (creator of Linux) in 2005
e Designed as a Version Control System (VCS) for the Linux kernel

e \ery popular, but not the only VCS
(Mercurial, SVN, CVS, Perforce, darcs, Pijul, ...)

e You will learn how git works across two lectures

o A practical guide (this lecture)
o Adeep-dive into git's underlying architecture (09/21, Prof. Levy)

git 101

e Git tracks content in a git repository
o Let’s create one now!

leons@silicon ~/c0s316-103> mkdir cos316-repo
leons@silicon ~/c0s316-103> cd cos316-repo/

leons@silicon ~/c/cos316-repo> git init
Initialized empty Git repository in /home/leons/c0s316-103/cos316-repo/.git/

leons@silicon ~/c/cos316-repo (main)>

git 101

git

e Git tracks content in a git repository
o Let’s create one now!

e Arepository manages a given folder (i.e. your project’s root directory)

leons@silicon ~/c/cos316-repo (main)> git status
On branch main

No commits yet
nothing to commit (create/copy files and use "git add" to track)

leons@silicon ~/c/cos316-repo (main)> echo '
package main

import "fmt"

func main() {
fmt.Println("Hello World!")
}

> test.go

leons@silicon ~/c/cos316-repo (main)> go run test.go
Hello World!

leons@silicon ~/c/cos316-repo (main)> git status
On branch main

No commits yet
Untracked files:

(use "git add <file>...
main.go

to include in what will be committed)

nothing added to commit but untracked files present (use "git add" to track)

git 101

git

e Git tracks content in a git repository
o Let’s create one now!

e Arepository manages a given folder (i.e. your project’s root directory)

e Git tracks versions through commits

o A commitis a snapshot of the repository directory
o It only includes changes marked for inclusion

leons@silicon ~/c/cos316-repo (main)> git add main.go

leons@silicon ~/c/cos316-repo (main)> git status
On branch main

No commits yet
Changes to be committed:

(use "git rm --cached <file>...
new file: main.go

to unstage)

git 101

git

e Git tracks content in a git repository
o Let’s create one now!

e Arepository manages a given folder (i.e. your project’s root directory)

e Git tracks versions through commits

o A commitis a snapshot of the repository directory
o It only includes changes marked for inclusion

e (git add adds afile to the “staging area”

o The next commit will include whichever changes are staged
o git add “freezes” the file version added to the staging area — let’s see this in action

leons@silicon ~/c/cos316-repo (main)> sed -i 's/World/C0S316/g' main.go
leons@silicon ~/c/cos316-repo (main)> cat main.go

func main() {
fmt.Println("Hello C0S316!")
b

leons@silicon ~/c/cos316-repo (main)> git status
On branch main

No commits yet , _ .
main.go is added and modified!

Changes to be committed: The added version still prints “Hello

(use "git rm --cached <file>..." to unstage Worldl", but the current in-tree
version prints “Hello COS316!”

new file: main.go

Changes not staged for commit:
(use "git add <file>..." to upd what will be committed)

(use "git restore <file>..."to discard changes in working directory)

modified: main.go

git 101

e |Let’s create our first commit!

e git commit records a snapshot of the entire repository
o But only including the changes from the staging area

e Best practice: always check what you're committing!

o Usegit diff --staged to view the currently staged changes
o Usegit diff to view changes not currently staged

leons@silicon ~/c/cos316-repo (main)> git diff --staged
diff --git a/main.go b/main.go

new file mode 100644

index 00006000..b1b14d0

--- /dev/null

+++ b/main.go

@@ -0,0 +1,7 @@

+package main

+

+import "fmt"

+

+func main() {

+ fmt.Println("Hello World!")
+}

leons@silicon ~/c/cos316-repo (main)> git diff
diff --git a/main.go b/main.go
index b1b14d@..d9%4cebf 100644
--- a/main.go
+++ b/main.go
@@ -3,5 +3,5 @@ package main
import "fmt"

func main() {
- fmt.Println("Hello World!")
+ fmt.Println("Hello C0S316!")
}

git 101

e |Let’s create our first commit!

e git commit records a snapshot of the entire repository
o But only including the changes from the staging area

e Best practice: always check what you're committing!

o Usegit diff --staged to view the currently staged changes
o Usegit diff to view changes not currently staged

e Looking good? Use git commit to finalize your commit!

o Record some semantic information with this change:
git commit -m “This is a commit message”

o Writing good commit messages is it's own science...

leons@silicon ~/c/cos316-repo (main)> git commit -m "Add Hello World
application”

[main (root-commit) fa93736] Add Hello World application

1 file changed, 7 insertions(+)

create mode 100644 main.go

leons@silicon ~/c/cos316-repo (main)> git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: main.go

no changes added to commit (use "git add" and/or "git commit -a"

leons@silicon ~/c/cos316-repo (main)> git show
commit fa937364b216ce78a07356b096618fbf85eca523 (HEAD -> main)
Author: Leon Schuermann <leon@is.currently.online>

Date: Sun Sep 10 18:17:37 2023 -0400

Add Hello World application

diff --git a/main.go b/main.go

git 101

e Commits are identified by a 40-character “commit id”

[main (root-commit) fa937364] Add Hello World application

leons@silicon ~/c/cos316-repo (main)> git show

commit fa937364b216ce78a07356b096618fbf85eca523 (HEAD -> main)
Author: Leon Schuermann <leon@is.currently.online>

Date: Sun Sep 10 18:17:37 2023 -0400

Add Hello World application

e Prof. Levy’s lecture will go into the details of this naming scheme

git 101

e Let's create a second commit!

e How does git know what changed in this commit?
o git records the commit ids of the predecessor(s) of a commit

leons@silicon ~/c/cos316-repo (main)> git show --pretty=raw
commit 96758501677093f6ea8ceB3f9debeec0483e57448

tree da837819f31f9b869299db74b932e88f136f667ae

parent fa937364b216ce78a07356b096618fbf85eca523

o Creates a traversable version history, viewable with git log --graph

leons@silicon ~/c/cos316-repo (main)> git log --graph

* commit 96758501677093f6ea8ceB3f9debeeB483e5f448 (HEAD -> main)
Author: Leon Schuermann <leon@is.currently.online>
Date: Sun Sep 10 18:49:02 2023 -0400

I
I
|
| Make greeting more specific
|
*

commit fa937364b216ce78a07356b096618fbf85eca523
Author: Leon Schuermann <leon@is.currently.online>

learngitbranching.js.org

https://learngitbranching.js.org/?NODEMO

eonn # Learn Git Branching - 7
“~ main*

(0 §

L Reks) # Learn Git Branching co :
$ git commit | S

main*

enn # Learn Git Branching

$ git commit
$ git checkout C1

main

c2

eon # Learn Git Branching

$ git commit

$ git checkout C1

$ git checkout main

$ git branch ft-greet

co

c2

main*
ft-greet

Learn Git Branching

commit

checkout (1
checkout main
branch ft-greet
checkout ft-greet

main
ft-greet*

enn # Learn Git Branching co :

commit & “H
checkout C1 & 1
checkout main ~ main
branch ft-greet & -~
checkout ft-greet & €2
commit & S
commit &
c3
-~ ft-greet*
c4

LRk # Learn Git Branching co ‘

$ commit &

$ checkout C1 = c1

$ checkout main ~ main*

$ branch ft-greet ~

3 checkout ft-greet = €2

S commit =

$ commit & o

$ checkout main & ft-greet
c4

o heks # Learn Git Branching co :

$ git commit ~

$ git checkout C1 ~ 1

$ git checkout main &~

$ git branch ft-greet ~

$ git checkout ft-greet & €2

$ git commit & V'S

$ git commit C4 e

$ git checkout main & i
$ git merge ft-greet ~ ft-greet
Fast forwarding... 4

L Reks # Learn Git Branching ce :

$ git commit & | S

$ git checkout C1 & c1

$ git checkout main & main¥
$ git branch ft-greet & -~

$ git checkout ft-greet & 2

$ git commit &

$ git commit & =

$ git checkout main & ft-greet
$ git merge ft-greet ~

Fast forwarding... 4

$ git reset C2

®

600 # Learn Git Branching ' ce ‘i

$ git commit & i

$ git checkout C1 ~ c1

$ git checkout main &

$ git branch ft-greet & <

$ git checkout ft-greet ~ 2

$ git commit = /’“-~\§‘__’§___,,—f""\
$ git commit & - =
$ git checkout main & ft-greet

$ git merge ft-greet & e main*

Fast forwarding... 4

$ git reset C2
$ git commit

KK

git
git
git
git
git
git
git
git
git

$
$
$
$
$
$
$
$
$

Fast forwarding...

$ git
$ git
$ git

Learn Git Branching

commit

checkout C1
checkout main
branch ft-greet
checkout ft-greet
commit

commit

checkout main
merge ft-greet

reset C2
commit
merge ft-greet

RARRRRRR®

KRR

aH

c1

c2
c3 cs
-~ ft-greet
c4

Cé

main*

Distributed Version Control with git

e (itis a distributed version control system

e There can be many clones or copies of a repository
o Sync commits, references, etc. between different copies

e Supports a fully decentralized workflow

o No single “source of truth” server, as with e.g., Google docs
o git works offline, without connection to a server or other clients

e Software forges (e.g., GitHub) provide git hosting

o Just another (public) copy of your repository!

e Many different workflows for distributed git

Continuous Integration

e Automatic merges with git are great!

o Enables working on features in parallel
o Across multiple developers

e Merging codebases can break a system in subtle ways

o E.g., you might rely on a function changed in a merged branch
o Just because git does not detect a conflict, does not mean your program still works!

e This creates friction in the development process

Continuous Integration

e Continuous Integration (Cl) is a development practice,
— integrating contributions often (multiple times a day),
— while building and testing automatically, on each merge.

git takes care of the “automatic integration” part!

e One such system: GitHub Actions
o Allows running arbitrary commands in “the cloud” (in a VM)

e This course’s autograder is a “Cl system”
o Tests your code against a predefined set of test cases
(You can’t see the test cases though ©)

Image CC BY-SA 4.0, Markus Meier

