
Introduction to Naming
COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

1

It has been said that the principal function of an operating system is to define
a number of different names for the same object, so that it can busy itself
keeping track of the relationship between all of the different names.

-David Clark, 1982 RFC 814

2

Application: “I would like to send data to the Internet host, please.”
System: “Which host?”
Application:“Oh… uh… cos316.princeton.edu”

cos316.princeton.edu is the name for an IP address!

3

Application: “I would like to send data to the Internet host, please.”
System: “Which host?”
Application:“Oh… uh… cos316.princeton.edu”

cos316.princeton.edu is the name for an IP address!

3

Application: “Can I please get the data?”
System: “You’re gonna have to be more specific.”
Application:“The data in ‘/home/alevy/world-domination-todo.txt”

/home/alevy/world-domination.txt is the name for a bunch of sectors on disk!

4

Application: “Can I please get the data?”
System: “You’re gonna have to be more specific.”
Application:“The data in ‘/home/alevy/world-domination-todo.txt”

/home/alevy/world-domination.txt is the name for a bunch of sectors on disk!

4

Application: “What is the sum of two numbers?”
System: “I really need to know which numbers…”
Application: “Fine, fine, fine: the ones in registers r1 and r2.”

r1 and r2 are names for words of memory residing in CPU registers!

5

Application: “What is the sum of two numbers?”
System: “I really need to know which numbers…”
Application: “Fine, fine, fine: the ones in registers r1 and r2.”

r1 and r2 are names for words of memory residing in CPU registers!

5

Whenever an application uses a resource, it must somehow name it.

6

Why does it matter?

Principle: minimize abstraction at each layer

An intellectual framework for naming

Next, naming in…
• UNIX File System
• Git
• Networking

7

Why does naming matter?

Naming is the most central design choice in systems

• Me, just now

8

Why does naming matter?

Recall: Systems provide an interface to underlying resources

• Mediate access to shared resources
• Isolate applications
• Abstract complexity
• Abstract differences in implementation

We always need some way for applications (or other clients) to name those resources.

9

Why does naming matter?

The names systems use to expose underlying resources affects every other aspect of
the system:

• Performance of system implementation
• Application performance and flexibility
• Security
• Effectiveness of caching
• Resource sharing and concurrency

10

Performance Example: Naming Memory

Applications use Physical Addresses
• Does not require any translation hardware.
• Many small microcontrollers use this to save die space, energy, cost, cycles

11

Performance Example: Naming Memory

Applications use Physical Addresses
• Does not require any translation hardware.
• Many small microcontrollers use this to save die space, energy, cost, cycles

11

Applications use Virtual Addresses

• Gives the system more flexibility in allocating memory
• Can deduplicate, colocate, overprovision, swap, etc
• Ultimately makes applications faster and simpler

• Requires additional hardware and more complex memory management

12

Security Example: Naming Files

Filesystem Namespaces (chroot, jails, …)
• Impossible for an application to express reading a file outside its sandbox
• No dynamic checks required from system on file access

13

Security Example: Naming Files

Filesystem Namespaces (chroot, jails, …)
• Impossible for an application to express reading a file outside its sandbox
• No dynamic checks required from system on file access

13

Explicit Access Control for Global Namespace

• Allows much more flexible security policies
• Might be easier to audit, since policy is specified explicitly

• But also might be harder if harder to divide policy into independent components
• Each file access must be guarded to ensure security

• Lots of places there could be bugs
• Might degrade performance

14

Other examples

Virtualization with subdivisible names
Subdivisible names let virtualization layers subdivide resources easily:

“You get disk sectors 1-100, while you get 101-200, …”

Conversely, can’t subdivide “any input from the keyboard,” so system is responsible for
implementing some multiplexing policy.

E.g., window managers forward all key strokes to the focused application.

Caching granular and coarse names
Naming big resources allows caches to easily “prefetch” related data, but is ineffective
when data isn’t specially local.

For example, huge memory pages vs. regular memory pages on x86.

15

Why are names important?

• The primary way applications interact with a system
• Often the first step in designing a system

• A central design decision
• Can make implementation easier or obvious

• A good place to start understanding systems
• Choice of naming scheme can dictate system trade-offs

16

Principle

Names in a system should minimally abstract underlying resources to achieve
goal (portability, security, sharing, etc).

Provide higher-level abstraction with more “layers”.

• UNIX file system
• Git internals
• Network naming

17

Naming Scheme Framework

• Values: What is it that we’re naming?

• Disk sectors?
• Network nodes?
• Users?

• Names: What’s the format of a name?

• Alphanumeric strings up to 32 characters
• Non-zero integers
• 128-bit numbers

• Allocation mechanism: How does the system create new names and values?

• Lookup mechanism: How does the system map from names to values?

18

Naming and system trade-offs

Let’s compare alternate naming systems from the physical world:

Building numbers in a city block

San Francisco -vs- Tokyo

19

Naming and system trade-offs

Let’s compare alternate naming systems from the physical world:

Building numbers in a city block

San Francisco -vs- Tokyo

19

Figure 1: How do we name each of these buildings?

20

San Francisco

How do buildings get their name?

Subdivide the block into N plots numbered 1-N

Name buildings with the number of their plot

But… what happens when we build the N+1th building? Or if we want to divide a plot
in half?

E.g., I used to live at 3477 1/2 17th St.

21

San Francisco

How do buildings get their name?
Subdivide the block into N plots numbered 1-N

Name buildings with the number of their plot

But… what happens when we build the N+1th building? Or if we want to divide a plot
in half?

E.g., I used to live at 3477 1/2 17th St.

21

San Francisco

How do buildings get their name?
Subdivide the block into N plots numbered 1-N

Name buildings with the number of their plot

But… what happens when we build the N+1th building? Or if we want to divide a plot
in half?

E.g., I used to live at 3477 1/2 17th St.

21

San Francisco

How do buildings get their name?
Subdivide the block into N plots numbered 1-N

Name buildings with the number of their plot

But… what happens when we build the N+1th building? Or if we want to divide a plot
in half?

E.g., I used to live at 3477 1/2 17th St. 21

Tokyo

How do buildings get their name?

Buildings numbered from oldest to newest.

Whenever a new building is built, give it the next highest number on the block

Finding a building is hard! Need to check buildings until you find the right number.

But… virtually infinite possibility for expansion!

22

Tokyo

How do buildings get their name?
Buildings numbered from oldest to newest.

Whenever a new building is built, give it the next highest number on the block

Finding a building is hard! Need to check buildings until you find the right number.

But… virtually infinite possibility for expansion!

22

Tokyo

How do buildings get their name?
Buildings numbered from oldest to newest.

Whenever a new building is built, give it the next highest number on the block

Finding a building is hard! Need to check buildings until you find the right number.

But… virtually infinite possibility for expansion!

22

Tokyo

How do buildings get their name?
Buildings numbered from oldest to newest.

Whenever a new building is built, give it the next highest number on the block

Finding a building is hard! Need to check buildings until you find the right number.

But… virtually infinite possibility for expansion!

22

Different naming and trade-offs

San Francisco Addressing Tokyo Addressing
Easy allocation no :(YES
Easy lookup YES no :(

23

Applying Framework to Building Numbers

San Francisco Addressing Tokyo Addressing
Values Physical buildings Physical buildings
Names Numbers 1-N Numbers >=1
Allocation Pre-defined plot numbers New building gets next highest number
Lookup Search ordered set Visit every building and check

24

Virtual Memory

Disk

RAM

Another
process's
memory

Virtual memory
(per process)

Physical
memory

Figure 2: Virtual Memory

25

What does virtual memory give us?

• Isolation: 0xdeadbeef maps to different values for different applications

• Abstraction over storage media: virtual addresses can name memory, storage,
remote memory, HW register, …

• Flexibility in provisioning

• Resource efficiency: physical memory can be less sparse than virtual memory
• Overcommit physical memory (e.g. swap to disk when necessary)

26

Virtual Memory as a Naming Scheme

• Values?

• Names?

• Allocation?

• Lookup?

27

Virtual Memory: Values

A pair, including the type of storage (memory, file, hardware register, etc), and:

• Physical memory address (i.e. 32-bit or 64-bit address up to size of RAM)

• On-disk file and offset in file

• Some hardware registers (e.g. a network card configuration registers)

• Remote memory

28

Virtual Memory: Values

A pair, including the type of storage (memory, file, hardware register, etc), and:

• Physical memory address (i.e. 32-bit or 64-bit address up to size of RAM)

• On-disk file and offset in file

• Some hardware registers (e.g. a network card configuration registers)

• Remote memory

28

Virtual Memory: Values

A pair, including the type of storage (memory, file, hardware register, etc), and:

• Physical memory address (i.e. 32-bit or 64-bit address up to size of RAM)

• On-disk file and offset in file

• Some hardware registers (e.g. a network card configuration registers)

• Remote memory

28

Virtual Memory: Values

A pair, including the type of storage (memory, file, hardware register, etc), and:

• Physical memory address (i.e. 32-bit or 64-bit address up to size of RAM)

• On-disk file and offset in file

• Some hardware registers (e.g. a network card configuration registers)

• Remote memory

28

Virtual Memory: Names

Pointer-sized (e.g. 32-bit or 64-bit) addresses and process identifiers

(𝑃𝐼𝐷, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑎𝑑𝑑𝑟𝑒𝑠𝑠)

e.g.

(3487, 0𝑥𝑑𝑒𝑎𝑑𝑏𝑒𝑒𝑓)

Note: the processes identifier is generally implicitly whichever process performed the
memory operation

29

Virtual Memory: Names

Pointer-sized (e.g. 32-bit or 64-bit) addresses and process identifiers

(𝑃𝐼𝐷, 𝑣𝑖𝑟𝑡𝑢𝑎𝑙_𝑎𝑑𝑑𝑟𝑒𝑠𝑠)

e.g.

(3487, 0𝑥𝑑𝑒𝑎𝑑𝑏𝑒𝑒𝑓)

Note: the processes identifier is generally implicitly whichever process performed the
memory operation

29

Virtual Memory: Allocation

void *mmap(void *addr, size_t length) (simplified)

• Application chooses an unused name: an address not yet allocated for it

• Kernel keeps a list of unused physical 4KB memory pages

• Kernel allocates “value” by removing a physical page from the list

• Kernel adds new mapping between virtual address and physical to the
application’s “page table”

• in-memory data structure understood by the virtual memory hardware that maps
virtual addresses to physical addresses

30

Virtual Memory: Lookup

page table

disk

TLB

TLB write

TLB hit

TLB miss

page table
hit

page not
present

page table write

virtual address physical address

Figure 3: Virtual-to-physical translation

31

Virtual Memory: Lookup

08162431 15 723

...
...

...
...

...
...

4
K

 m
e
m

o
ry

 p
a
g
e

10

32*

1210

Linear address:

page directory

32 bit PD
entry

CR3

*) 32 bits aligned to a 4-KByte boundary

page table

32 bit PT
entry

Figure 4: Two-level page table structure in x86

32

Virtual Memory: Lookup

For this to work, the OS needs to do some housework when context switching:

• Set CR3 register to point to process’s page table

• Invalidate the TLB

• Mark entire TLB as invalid—simple but can cause unnecessary slow down

• Associate process IDs with each TLB entry

33

Virtual Memory: Trade-offs with Alternative Naming Schemes

• Single shared address space (identity mapping)
• Better performance, since no translation hardware/software needed
• But can’t isolate using names

• Swap out all memory for one process at a time (original UNIX)
• Simple and efficient to implement in hardware
• Can’t run applications in parallel
• Expensive to switch between applications

• Segmentation: virtual address are low-order bits of physical address + segment
register

• Relatively simple hardware (just concatenate segment register and virtual address)
• Isolates concurrent applications using names
• Much coarser grain: all virtual memory must be contiguous in RAM
• Can’t share memory between applications

34

Summary

• Names are the way systems expose resources to applications
• Central to designing and understanding systems

• performance
• security
• caching
• resource sharing

• Framework for naming:
• Values
• Names
• Allocation mechanism
• Lookup mechanism

35

	Why does naming matter?
	Principle
	Naming Scheme Framework

