
UNIX File System
COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

1

Figure 1: [3] 2

A Brief History of UNIX: 1970s

• Developed at AT&T Bell Labs following demise of the “Multics” project

• “Unics” began as a rewrite of “Multics” (Multiplexed Information and Computer
Services)

• “Uniplexed Information and Computing Service”, because early versions were
single-tasking

• Naming credit: Prof. Brian Kernighan

• Berkeley Software Distribution (BSD) follows Ken Thompson’s sabbatical at UC
Berkeley

3

A Brief History of UNIX: 1980s

• AT&T free to sell computers after Bell Systems breakup

• AT&T UNIX versions turn proprietary

• Flurry of non-AT&T UNIX variants

• Academic: Minix, Mach microkernels

• GNU – “free” alternative to UNIX

• NeXTStep (OS X predecessor), SunOS, Xenix

4

Figure 2: [1] 5

Figure 3: [2]
6

A Brief History of UNIX: 1990s & Beyond

• BSD rewritten following copyright claims, emerges as various offshoots

• (FreeBSD, NetBSD, OpenBSD, DragonflyBSD, …)

• Linux + GNU, fill void during BSD copyright dispute

• Apple uses NeXTSTEP & BSD as basis for OS X

• Android, iOS

7

• The UNIX operating system’s API have remained relevant since the 1970s

• From “mini”-computers to todays rack-scale servers and personal devices alike!

• The UNIX file system has been even more influential and constant.

8

• The UNIX operating system’s API have remained relevant since the 1970s

• From “mini”-computers to todays rack-scale servers and personal devices alike!

• The UNIX file system has been even more influential and constant.

8

• The UNIX operating system’s API have remained relevant since the 1970s

• From “mini”-computers to todays rack-scale servers and personal devices alike!

• The UNIX file system has been even more influential and constant.

8

Why File Systems?

• Common themes in UNIX systems:

• User oriented

• Multiple applications

• Time sharing

• Need a way to store and organize persistent data

Key question: how to let users organize and locate their data on persistent storage?

9

Key Abstraction

• Data is organized into “files”

• A linear array of bytes of arbitrary length

• Meta data about the bytes (modification and creation time, owner, permissions)

• Files organized into “directories”

• A list of other files or sub-directories

• Common root directory named "/"

• Contrast with drive letters in Windows

10

UNIX File System Layers

Block layer organizes persistent storage into fix-sized blocks
File layer organizes blocks into arbitrary-length files
Inode number layer names files as uniquely numbered inodes
Directory layer human-readable names for files in a directory
Absolute path name layer a global root directory

11

Figure 4: The UNIX File System’s Naming Hierarchy

12

UNIX File System Layers

For each of these we’ll look at:
• Values
• Names
• Allocation mechaniem
• Lookup mechanism

And ask:
• How portable?
• How general?
• Can it isolate?

Multiplex?

Principle
Names in a system should minimally abstract underlying
resources to achieve goal

13

Block layer

• Underlying resources differ

• Tape has contiguous magnetic stripe

• Disk has plates and arms

• NAND flash (SSDs) even more complex to deal with wear leveling, data striping…

• Values: fix-sized “blocks” of contiguous persistent memory

• Names: integer block numbers

14

Block layer: Allocation

Hardware specific, but let’s just pretend our storage device is in-memory

typedef block uint8_t[4096]

There is some hardware-specific translation from
blocks to, e.g., plate number and offset
struct device {

block blocks[N]
}

15

Block layer: Allocation

Super Block: a special block number to keep a bitmap of occupied blocks

struct super_block {
int32_t total_size
int32_t free_block_map

}

16

Block layer: Lookup

struct device {
block blocks[N]

}

def (device *device) block_number_to_block(int32_t block_num) returns block:
return device.blocks[block_num + 1]

17

Block layer: Portable? General? Isolation? Multiplexing?

How portable?

• Can be (and has been!) implemented efficiently for most persistent storage media
• Tape, HDDs, floppy disks, optical drives… even network attached storage!

• SSDs not a great fit due to need for wear leveling
• Flash controllers are complex and obscure computers that hide flash behind block

interface

How general?
• Lose some expressiveness: block size, performance characteristics
• But not much

Isolation? Multiplexing?
• Block numbers are global, they always represent the same physical location
• Enables some multiplexing, because layer keeps track of free/used blocks

18

Block layer: Portable? General? Isolation? Multiplexing?

How portable?
• Can be (and has been!) implemented efficiently for most persistent storage media

• Tape, HDDs, floppy disks, optical drives… even network attached storage!
• SSDs not a great fit due to need for wear leveling

• Flash controllers are complex and obscure computers that hide flash behind block
interface

How general?
• Lose some expressiveness: block size, performance characteristics
• But not much

Isolation? Multiplexing?
• Block numbers are global, they always represent the same physical location
• Enables some multiplexing, because layer keeps track of free/used blocks

18

Block layer: Portable? General? Isolation? Multiplexing?

How portable?
• Can be (and has been!) implemented efficiently for most persistent storage media

• Tape, HDDs, floppy disks, optical drives… even network attached storage!
• SSDs not a great fit due to need for wear leveling

• Flash controllers are complex and obscure computers that hide flash behind block
interface

How general?

• Lose some expressiveness: block size, performance characteristics
• But not much

Isolation? Multiplexing?
• Block numbers are global, they always represent the same physical location
• Enables some multiplexing, because layer keeps track of free/used blocks

18

Block layer: Portable? General? Isolation? Multiplexing?

How portable?
• Can be (and has been!) implemented efficiently for most persistent storage media

• Tape, HDDs, floppy disks, optical drives… even network attached storage!
• SSDs not a great fit due to need for wear leveling

• Flash controllers are complex and obscure computers that hide flash behind block
interface

How general?
• Lose some expressiveness: block size, performance characteristics
• But not much

Isolation? Multiplexing?
• Block numbers are global, they always represent the same physical location
• Enables some multiplexing, because layer keeps track of free/used blocks

18

Block layer: Portable? General? Isolation? Multiplexing?

How portable?
• Can be (and has been!) implemented efficiently for most persistent storage media

• Tape, HDDs, floppy disks, optical drives… even network attached storage!
• SSDs not a great fit due to need for wear leveling

• Flash controllers are complex and obscure computers that hide flash behind block
interface

How general?
• Lose some expressiveness: block size, performance characteristics
• But not much

Isolation? Multiplexing?

• Block numbers are global, they always represent the same physical location
• Enables some multiplexing, because layer keeps track of free/used blocks

18

Block layer: Portable? General? Isolation? Multiplexing?

How portable?
• Can be (and has been!) implemented efficiently for most persistent storage media

• Tape, HDDs, floppy disks, optical drives… even network attached storage!
• SSDs not a great fit due to need for wear leveling

• Flash controllers are complex and obscure computers that hide flash behind block
interface

How general?
• Lose some expressiveness: block size, performance characteristics
• But not much

Isolation? Multiplexing?
• Block numbers are global, they always represent the same physical location
• Enables some multiplexing, because layer keeps track of free/used blocks

18

File layer

A file is a linear array of bytes of arbitrary length:

• May span multiple blocks

• May grow or shrink over time

How do we keep track of which blocks belong to which file?

Names: References to inode structs

Values: arrays of bytes up to size N

Allocation: reuse block layer to store new inode structs in blocks

19

File layer

A file is a linear array of bytes of arbitrary length:

• May span multiple blocks

• May grow or shrink over time

How do we keep track of which blocks belong to which file?

Names: References to inode structs

Values: arrays of bytes up to size N

Allocation: reuse block layer to store new inode structs in blocks

19

File Layer

File Layer

Figure 5: The inode struct is stored in a block and points to blocks containing file data

20

File layer: Lookup

struct inode {
int32_t block_numbers[N];
int32_t filesize

}

def (inode *inode) offset_to_block(int offset) returns block:
block_idx = offset / BLOCKSIZE
block_num = inode.block_numbers[block_idx]
return device.block_number_to_block[block_num]

What’s the maximum file size this scheme can support? Assume BLOCKSIZE == 4KiB

((4096 − 4)/4) ∗ 4096 ≈ 4𝑀𝐵

21

File layer: Lookup

struct inode {
int32_t block_numbers[N];
int32_t filesize

}

def (inode *inode) offset_to_block(int offset) returns block:
block_idx = offset / BLOCKSIZE
block_num = inode.block_numbers[block_idx]
return device.block_number_to_block[block_num]

What’s the maximum file size this scheme can support? Assume BLOCKSIZE == 4KiB

((4096 − 4)/4) ∗ 4096 ≈ 4𝑀𝐵

21

File layer: Lookup

struct inode {
int32_t block_numbers[N];
int32_t filesize

}

def (inode *inode) offset_to_block(int offset) returns block:
block_idx = offset / BLOCKSIZE
block_num = inode.block_numbers[block_idx]
return device.block_number_to_block[block_num]

What’s the maximum file size this scheme can support? Assume BLOCKSIZE == 4KiB

((4096 − 4)/4) ∗ 4096 ≈ 4𝑀𝐵

21

File layer: Lookup

struct inode {
int32_t block_numbers[N];
int32_t filesize

}

def (inode *inode) offset_to_block(int offset) returns block:
block_idx = offset / BLOCKSIZE
block_num = inode.block_numbers[block_idx]
return device.block_number_to_block[block_num]

What’s the maximum file size this scheme can support? Assume BLOCKSIZE == 4KiB

((4096 − 4)/4) ∗ 4096 ≈ 4𝑀𝐵

21

File layer: Portable? General? Isolation?

How portable?

• Can implement for any block device . . .

How general?
• Applications completely lose locality information
• Fine for most applications, but not for specific use cases, e.g., databases

Isolation or multiplexing?
A name always refers to particular data, so no inherent isolation here.

But, multiplexing is provided by allowing efficient allocation of underlying shared
resource

22

File layer: Portable? General? Isolation?

How portable?
• Can implement for any block device . . .

How general?

• Applications completely lose locality information
• Fine for most applications, but not for specific use cases, e.g., databases

Isolation or multiplexing?
A name always refers to particular data, so no inherent isolation here.

But, multiplexing is provided by allowing efficient allocation of underlying shared
resource

22

File layer: Portable? General? Isolation?

How portable?
• Can implement for any block device . . .

How general?
• Applications completely lose locality information
• Fine for most applications, but not for specific use cases, e.g., databases

Isolation or multiplexing?
A name always refers to particular data, so no inherent isolation here.

But, multiplexing is provided by allowing efficient allocation of underlying shared
resource

22

File layer: Portable? General? Isolation?

How portable?
• Can implement for any block device . . .

How general?
• Applications completely lose locality information
• Fine for most applications, but not for specific use cases, e.g., databases

Isolation or multiplexing?

A name always refers to particular data, so no inherent isolation here.

But, multiplexing is provided by allowing efficient allocation of underlying shared
resource

22

File layer: Portable? General? Isolation?

How portable?
• Can implement for any block device . . .

How general?
• Applications completely lose locality information
• Fine for most applications, but not for specific use cases, e.g., databases

Isolation or multiplexing?
A name always refers to particular data, so no inherent isolation here.

But, multiplexing is provided by allowing efficient allocation of underlying shared
resource

22

Inode number layer

• Names: Inode numbers

• Values: Inode structs

• Allocation

• Can re-use block allocation and block numbers

• File systems often use special inode allocation to avoid slow seeks on disk for
common operations

• Lookup

• If re-using block allocation:
𝑖𝑛𝑜𝑑𝑒_𝑛𝑢𝑚𝑏𝑒𝑟_𝑡𝑜_𝑖𝑛𝑜𝑑𝑒 ≡ 𝑏𝑙𝑜𝑐𝑘_𝑛𝑢𝑚𝑏𝑒𝑟_𝑡𝑜_𝑏𝑙𝑜𝑐𝑘

23

Inode number layer

• Names: Inode numbers

• Values: Inode structs

• Allocation

• Can re-use block allocation and block numbers

• File systems often use special inode allocation to avoid slow seeks on disk for
common operations

• Lookup

• If re-using block allocation:
𝑖𝑛𝑜𝑑𝑒_𝑛𝑢𝑚𝑏𝑒𝑟_𝑡𝑜_𝑖𝑛𝑜𝑑𝑒 ≡ 𝑏𝑙𝑜𝑐𝑘_𝑛𝑢𝑚𝑏𝑒𝑟_𝑡𝑜_𝑏𝑙𝑜𝑐𝑘

23

Recap so far

• Name files by inode number (e.g. 43982), translate to inode structs

• Inodes translate to a list of ordered block numbers that store the file’s data

• Block numbers translate to blocks—the actual file data

Given a inode number, we can get an ordered byte array.

Remaining issues:

1. Numbers are convenient names for machines, but not for humans

2. How do we discover files?

24

Recap so far

• Name files by inode number (e.g. 43982), translate to inode structs

• Inodes translate to a list of ordered block numbers that store the file’s data

• Block numbers translate to blocks—the actual file data

Given a inode number, we can get an ordered byte array.

Remaining issues:

1. Numbers are convenient names for machines, but not for humans

2. How do we discover files?

24

Directory layer

Structure files into collections called “directories”. Each file in a directory gets a
human readable name—i.e. an (almost) arbitrary ASCII string

• Names: Human readable names within a “directory”

• resume.docx, a.out, profile.jpg…

• Values: Inode numbers

Directories can contain files as well as other sub-directories

25

Directory layer

Figure 6: A directory is a special type of file that maps filenames to inode numbers
26

Directory layer: Allocation

struct dirent {
char[MAX_NAME_LENGTH] filename;
int inode_number;

}

// Add type field to inode
struct inode {
...
bool directory;

}

typedef directory inode; // Only when directory == true

27

Directory Layer: Lookup

def (dir *directory) lookup(string filename) returns inode_number:
for block_num in dir.block_numbers:

directory = block_number_to_block(block_num) as struct dirent[]
file_inode = directory.find(|dirent| dirent.filename == filename)
if file_inode >= 0:

return file_inode
return -1

28

Directory Layer: Lookup

Paths name files by joining directory and file names with /: path/to/file.txt

def (dir *directory) lookup(string path) returns inode_number:
let (next_path, rest) = path.split_first('/')
for block_num in dir.block_numbers:

directory = block_number_to_block(block_num) as struct dirent[]
if inode = directory.find(|dirent| dirent.filename == filename):

if rest.empty():
return inode

else
next_dir = block_number_to_block(inode)
if !next_dir.directory: panic("Uh oh, can't traverse a file")
return next_dir.lookup(rest as directory)

return -1 29

Directory layer: Portable? General? Isolation?

How portable?

Can implement for any inode & file layer—simply uses file layer for storage

How general?
• Assumes a hierarchical struture to file system.
• Works poorly for relational or structured data

• “please find all YAML files with the field foo”
• Alternate approaches: relational model: WinFS, GNOME Storage (both defunct)

Isolation? Multiplexing?
• All lookups are relative to some base directory!
• Can isolate applications by giving them different starting points (e.g. working

directory)

30

Directory layer: Portable? General? Isolation?

How portable?
Can implement for any inode & file layer—simply uses file layer for storage

How general?
• Assumes a hierarchical struture to file system.
• Works poorly for relational or structured data

• “please find all YAML files with the field foo”
• Alternate approaches: relational model: WinFS, GNOME Storage (both defunct)

Isolation? Multiplexing?
• All lookups are relative to some base directory!
• Can isolate applications by giving them different starting points (e.g. working

directory)

30

Directory layer: Portable? General? Isolation?

How portable?
Can implement for any inode & file layer—simply uses file layer for storage

How general?

• Assumes a hierarchical struture to file system.
• Works poorly for relational or structured data

• “please find all YAML files with the field foo”
• Alternate approaches: relational model: WinFS, GNOME Storage (both defunct)

Isolation? Multiplexing?
• All lookups are relative to some base directory!
• Can isolate applications by giving them different starting points (e.g. working

directory)

30

Directory layer: Portable? General? Isolation?

How portable?
Can implement for any inode & file layer—simply uses file layer for storage

How general?
• Assumes a hierarchical struture to file system.
• Works poorly for relational or structured data

• “please find all YAML files with the field foo”
• Alternate approaches: relational model: WinFS, GNOME Storage (both defunct)

Isolation? Multiplexing?
• All lookups are relative to some base directory!
• Can isolate applications by giving them different starting points (e.g. working

directory)

30

Directory layer: Portable? General? Isolation?

How portable?
Can implement for any inode & file layer—simply uses file layer for storage

How general?
• Assumes a hierarchical struture to file system.
• Works poorly for relational or structured data

• “please find all YAML files with the field foo”
• Alternate approaches: relational model: WinFS, GNOME Storage (both defunct)

Isolation? Multiplexing?

• All lookups are relative to some base directory!
• Can isolate applications by giving them different starting points (e.g. working

directory)

30

Directory layer: Portable? General? Isolation?

How portable?
Can implement for any inode & file layer—simply uses file layer for storage

How general?
• Assumes a hierarchical struture to file system.
• Works poorly for relational or structured data

• “please find all YAML files with the field foo”
• Alternate approaches: relational model: WinFS, GNOME Storage (both defunct)

Isolation? Multiplexing?
• All lookups are relative to some base directory!
• Can isolate applications by giving them different starting points (e.g. working

directory)

30

Absolute path name layer

• Each running UNIX program has a “working directory” (wd)

• File lookups are relative to the wd

• What if we want to name files outside of our wd’s directory hierarchy?

• E.g. share files between users

• What if we want globally meaningful paths?

31

Absolute path name layer

Solution:

• Special name /, hardcoded to a specific inode number

• All directories are part of a global file system tree rooted at /

• the “root” directory

Names: One name, /

Values: Hardcoded inode number, e.g., 2

Allocation: nil

Lookup: 𝜆_ → 2

32

Naming in UNIX File System: Recap

1. Absolute paths translate to paths starting from the “root” directory

2. Paths translate to recursive lookup for human-readable names in each directory

3. Human readable names translate to inode numbers

4. Inode numbers translate to inode structs

5. Inode structs translate to an ordered list of block numbers

6. Block numbers translate to blocks—the actual file data

33

Naming in UNIX File System: Recap

1. Absolute paths translate to paths starting from the “root” directory

2. Paths translate to recursive lookup for human-readable names in each directory

3. Human readable names translate to inode numbers

4. Inode numbers translate to inode structs

5. Inode structs translate to an ordered list of block numbers

6. Block numbers translate to blocks—the actual file data

33

Naming in UNIX File System: Recap

1. Absolute paths translate to paths starting from the “root” directory

2. Paths translate to recursive lookup for human-readable names in each directory

3. Human readable names translate to inode numbers

4. Inode numbers translate to inode structs

5. Inode structs translate to an ordered list of block numbers

6. Block numbers translate to blocks—the actual file data

33

Naming in UNIX File System: Recap

1. Absolute paths translate to paths starting from the “root” directory

2. Paths translate to recursive lookup for human-readable names in each directory

3. Human readable names translate to inode numbers

4. Inode numbers translate to inode structs

5. Inode structs translate to an ordered list of block numbers

6. Block numbers translate to blocks—the actual file data

33

Naming in UNIX File System: Recap

1. Absolute paths translate to paths starting from the “root” directory

2. Paths translate to recursive lookup for human-readable names in each directory

3. Human readable names translate to inode numbers

4. Inode numbers translate to inode structs

5. Inode structs translate to an ordered list of block numbers

6. Block numbers translate to blocks—the actual file data

33

Naming in UNIX File System: Recap

1. Absolute paths translate to paths starting from the “root” directory

2. Paths translate to recursive lookup for human-readable names in each directory

3. Human readable names translate to inode numbers

4. Inode numbers translate to inode structs

5. Inode structs translate to an ordered list of block numbers

6. Block numbers translate to blocks—the actual file data

33

Up Next

• Problems with location-addressed naming (e.g. UNIX file system)

• Transactions

• Versioning

• Data corruption

• We’ll look at Git’s content addressable store

• Please read chapter 10 of the Git book: Git Internals

34

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain

References

[1]
A Commodore 64, an 8-bit home computer introduced in 1982 by Commodore
International.
[2]
Intel 8086. Wikimedia Commons.

[3]
PDP11/40 as exhibited in Vienna Technical Museum. Wikimedia Commons.

35

https://en.wikipedia.org/wiki/File:Commodore-64-Computer-FL.jpg
https://en.wikipedia.org/wiki/File:Commodore-64-Computer-FL.jpg
https://upload.wikimedia.org/wikipedia/commons/e/ee/Pdp-11-40.jp://upload.wikimedia.org/wikipedia/commons/thumb/e/e1/KL_Intel_D8086.jpg/800px-KL_Intel_D8086.jpg
https://upload.wikimedia.org/wikipedia/commons/e/ee/Pdp-11-40.jpg

	File Layer

