
Git’s Content Addressable Storage
COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

1



Last time: UNIX File System Layers

Figure 1: UNIX File System Layers
2



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number
or location within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number
or location within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number
or location within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number
or location within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number
or location within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number
or location within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



UNIX File System Layers

An example of “location-based” naming schemes:

• The block layer names blocks based on the order in which they appear on disk

• The file layer names files based on where to find their blocks

• The inode number layer gives files names that correspond to their block number
or location within an inode table

• The absolute path name layer provides the location of the root directory

Location-based naming scheme

3



Today: When do locations fall short

• UNIX File System takes a location-centric view of the data it stores

• Point is: where on disk can I find this data I care about?

• When might this view be insufficient?

• Today: Git as a lens for:

• How location-based names fall short

• How content-based names can help

4



Today: When do locations fall short

• UNIX File System takes a location-centric view of the data it stores

• Point is: where on disk can I find this data I care about?

• When might this view be insufficient?

• Today: Git as a lens for:

• How location-based names fall short

• How content-based names can help

4



Version Control Overview

5



A Brief History of Version Control

Local version control
• 1972: Source Code Control System (SCCS) developed by early UNIX developers

• 1982: Revision Control System (RCS) developed by GNU project

Client/Server Centralized Version Control
• 1986: Concurrent Versions System (CVS) developed as front-end to RCS to

collaborate on Amsterdam Compiler Kit at Vrije University

• 2000: Subversion (SVN) a redesign of CVS widely used by open source projects

Distributed Version Control
• 2000: BitKeeper developed to address Linux’s distributed and large community

development model

• 2005: Git & Mercurial developed concurrently to replace BitKeeper after
BitMover starts charging open source projects. 6



Figure 2: Centralized Version Control

7



Centralized Version Control

• Central server holds “canonical” version of each file

• Files committed and versioned independently

• Typically only one or a few checkouts of a file

• Conflicts between developers expected to be rare

• All versioning and conflict resolution mediated by the server

Main role: efficiently store versions of the same file and coordinate updates to
individual files.

UNIX file system is a pretty good match!

8



Centralized Version Control

• Central server holds “canonical” version of each file

• Files committed and versioned independently

• Typically only one or a few checkouts of a file

• Conflicts between developers expected to be rare

• All versioning and conflict resolution mediated by the server

Main role: efficiently store versions of the same file and coordinate updates to
individual files.

UNIX file system is a pretty good match!

8



Centralized Version Control

• Central server holds “canonical” version of each file

• Files committed and versioned independently

• Typically only one or a few checkouts of a file

• Conflicts between developers expected to be rare

• All versioning and conflict resolution mediated by the server

Main role: efficiently store versions of the same file and coordinate updates to
individual files.

UNIX file system is a pretty good match!

8



Linux development model

9



Centralized Version Control Shortcomings…

• Are the set of files in the canonical version collectively valid?

• Not egalitarian: What if we don’t want just one “central” server?

• P2P collaboration, hierarchical, etc…

• What happens if the data on the central server is corrupted?

10



Distributed Version Control

Two important differences from centralized:

1. No inherent “canonical” version

2. Unit of a commit is a complete source code tree

• Each “version” represents a state that some developer intended at some time

• Versioning files is incidental

11



Figure 3: Distributed Version Control

12



Distributed Version Control Workflow Example

Figure 4: &nbsp

13



How would we do this with the UNIX file system?

We need a simple way to succinctly name files, trees, commits, etc such that we can
easily compare them.

We need to efficiently store and transmit many versions of source code tree. Most files
in each version will be unchanged.

14



How would we do this with the UNIX file system?
We need a simple way to succinctly name files, trees, commits, etc such that we can
easily compare them.

We need to efficiently store and transmit many versions of source code tree. Most files
in each version will be unchanged.

14



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

15



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

15



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

15



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

15



The Content-based Address

• A succinct summary of the content

• that’s unique for different content

• and the same for the same content

Cryptographic hash functions maps arbitrary size data to a fixed-sized bit-string that is:

• Deterministic

• Computationally “hard” to generate a message that yields a specific hash value

• Computationally “hard” to find two messages with the same hash value

• Similar messages have dissimilar hashes

15



Git Internals



Git Layers

Layer Purpose

Object layer Stores objects in a content-addressable store
Tree layer Organizes “blobs” into a directory-like hierarchy
Commit layer Versions the tree layer
Reference layer Provides human-readable names for trees, blobs, commits

Similar to UNIX file system layers, but uses content-based names instead of
location-based names.

16



Figure 5: Git’s Layers
17



Object Layer

“Objects” are the basic storage unit in Git, similar to blocks in the UNIX file system.
All data is stored as objects.

Names
• The SHA-1 hash of the object’s content: 40-byte string in hex (160-bits)

• aa8074278ed2c4803a2a545f277d1e0afe5039c3

Values
• Blobs: similar to files

• Trees: similar to directories

• Commits: points to tree and previous commit

18



Object Layer

Allocation
• Names “allocated” by taking the hash of the object content

Lookup
• Git uses the UNIX file system to store objects on disk

• We need to translate to locations at some point

• Objects stored in a directory .git/objects.

• Filename is the 40-byte hex string of the object’s name

19



Tree Layer

Similar to, and modeled after, directories in the UNIX file system:

Provide hierarchy of trees and blobs that can be traversed using human-meaningful
names.

Figure 6: Git tree objects 20



Tree Layer

Names
• Human-readable strings, just like in UNIX directories

Values
• Object name

• Object type

• Permissions (a subset of UNIX permissions)

Allocation
• Names are supplied by the user, just like in UNIX

• Generally, git mirrors an actual directory structure

21



Tree Layer

Lookup
• Trees stored as a list of entries, similar to directories

$ git cat-file -p 3914fbcc30ea8092034ca5ea4e6ebd0c887495df
100644 blob 96e87117fc618fc54a770bfc938405a29cca1fbb .gitignore
100644 blob 077b93358fba58cacc6acaf098baa317408aa16e Makefile
100644 blob 7addb405782f208c54f6d31182e173304ee117b9 README.md
040000 tree 303c20a830ce296d625fbf0fe4e4cd99fc33f3b1 http_router
040000 tree 85c17ff71ae5cfafcb1affebc4fbc1e8e67bd23c microblog-client
040000 tree a7dc7cfb0850fbfd4fcdf49310fd2e757cb42c08 microblog-server

22



Commit Layer

The commit layer gives Git a way to express a version history of the source code tree.
Commit objects contain

• A reference to the tree

• Metadata about the tree (the author of this version, when it was “committed”, a
message describing the changes from the previous version, etc…)

• A reference to the previous commit

23



Commit Layer

Names
• “Tree”

• “Parent”

• “Author”

• “Committer”

• “Commit message”

Values
• Object name of the tree

• Object name of the parent commit(s)

• Author/committer name and e-mail, and date committed

• Message as a string 24



Commit Layer

Allocation
• Names don’t need to be allocated because they are pre-determined

Lookup
• Commit objects have a defined format such that each name has a particular

location in the object

25



Reference Layer

Commits, trees, and blobs names not convenient for humans.

• Can’t remember hashes

• Not useful for discovery

• Need some point of synchronization

• e.g., how do we know which is the most recent commit?

References provide global, human readable names for objects

26



Reference Layer

Names
• Human readable names: e.g. “master”, “alevy/wip”, “HEAD”, etc

Values
• A commit name

27



Reference Layer

Allocation
• Reference names are assigned and managed by users

• Some standard reference names by convention:
• master: refers to the most recent “canonical” version of the source code

• HEAD: refers to the most recently committed tree on the local repository

• origin/*: refers to a reference on the “origin” repository, where this repository was
cloned from

Lookup
• Stored as UNIX files in a special subdirectory of the .git directory

• Each reference is a file containing the name of the object they refer to

28



Distributed Version Control Workflow

Figure 7: &nbsp

29



Contrasting Location-based names
& Content-based names



Layers of names

Both systems we looked at use layers of simple naming schemes.

• Makes reasoning easier
• UNIX File System

• Blocks, files, inode numbers, directories, absolute path
• Git

• Objects, blobs, trees, references
• Allow extensibility at multiple levels

• Can re-use block layer for other storage systems, e.g. databases
• Allows portability at multiple levels

• Can port files & directories to non-block storage

30



Economy of mechanism

Both systems we looked at reuse mechanisms where possible

• UNIX file system

• Stores everything in blocks: inodes, file data, file system metadata

• Reuses inodes for files and directories

• Git

• Stores everything in objects: blobs, trees, commits
• Single naming allocation scheme: secure hash function

31



Naming design trade-offs

Location-based names Content-based names
Necessary Yes! Nope
Discovery Easy Hard
Decentralized No Yes
Integrity Hard Easy
Transactions Hard Easy

32



Up Next

• Naming in Networking
• Assignment 1 due next Wednesday

33


	Git Internals
	Contrasting Location-based names & Content-based names

