Naming in Networking

COS 316: Principles of Computer System Design Lecture 7

Amit Levy & Ravi Netravali

Network Naming

Type of Name	Example
Uniform Resource Locator	http://www.cs.princeton.edu/~ravi/index.html
Hostname	www.cs.princeton.edu
Internet Protocol (IP) Address	128.112.136.61
Media Access Control (MAC) Address	00:15:C5:49:04:A9

Application	Application Messages		Hostname, URL
Transport	Reliable streams	Datagrams	<more later="" on="" this=""></more>
Network	Best-effort global packet delivery		IP address
Link	Best-effort local packet delivery		MAC address
Physical	Bit delivery		

Application	Application Messages		Hostname, URL
Transport	Reliable streams	Datagrams	<more later="" on="" this=""></more>
Network	Best-effort global packet delivery		IP address
Link	Best-effort local packet delivery		MAC address
Physical	Bit delivery		

- What are we naming?
- Network interfaces
 - Ethernet interface
 - WiFi interface
 - ...

Values:

Names:

Allocation:

• Who will use the names?

Values: Network Interfaces

- Network adaptors
 - This packet is for you.
 - Is this packet for me?

- Goals for name?
 - Fast and easy for adaptors to check

Names:

Allocation:

- Who will use the names?
- Network adaptors
 - This packet is for you.
 - Is this packet for me?

- Goals for name?
 - Fast and easy for adaptors to check
 - Globally unique
- MAC addresses are 48-bit addresses
 - 00:15:C5:49:04:A9

Names:

Values: Network Interfaces

Allocation:

- Globally unique names?
- Ask central authority for every name? X
- Random allocation? X
- Two-level allocation?
 - Central authority allocates blocks to venders
 - Vendors assigns address for its blocks
 - 00:15:C5:49:04:A9 Dell

Values: Network Interfaces

Names: 48-bit address

Allocation:

- Globally unique names?
- Ask central authority for every name? X
- Random allocation? X
- Two-level allocation?
 - Central authority allocates blocks to venders
 - Vendors assigns address for its blocks
 - 00:15:C5:49:04:A9 Dell

Values: Network Interfaces

Names: 48-bit address

Allocation:

• Lookup

- Flood packet to all hosts in the network
- (Optionally) learn what direction to go

Values: Network Interfaces

Names: 48-bit address

Allocation: Vendor from their assigned blocks

Lookup: Local flooding

• What are we naming?

Values:

- Hosts
 - My laptop
 - Zoom server
 - Your laptop
 - ...

Names:

Allocation:

- Who will use the names?
- Routers
 - Where is this packet headed?

Values: Hosts

Names:

Allocation:

- Who will use the names?
- Routers
 - Where is this packet headed?
- Goals for name?
 - Fast and easy for routers to process
 - Globally unique
 - Location-based: enable routing packets to destination
- IP addresses are 32 or 128 bit addresses
 - 128.112.7.156

Values: Hosts

Names:

Allocation:

- Globally unique and location-based names?
- Multi-level allocation? √
 - ICANN assigns large blocks to
 - Regional Internet registries assign sub-blocks to
 - Internet Service Providers assign addresses to
 - Hosts
 - ISPs serve a group of nearby hosts
 - ISPs can route to hosts in their sub-blocks

Values: Hosts

Names: 32 bit address

Allocation:

• How to map 128.112.7.156 to host?

Values: Hosts

- Network Routing!
 - Can't get all the way there right away, so figure out next hop: use routing table
 - Routing protocols map destination to next-hop IP address (fill in routing table)
 - BGP, OSPF, RIP, ...
 - ARP maps next-hop IP address to MAC address

Names: 32 bit address

Allocation: Multi-level, location-based

- ARP: Address Resolution Protocol briefly
 - Broadcast Request: Who has 128.112.7.156?
 - Broadcast Response: 00:15:C5:49:04:A9 has 128.112.7.156
 - Hosts cache responses, lookup in local table

Values: Hosts

Names: 32 bit address

Allocation: Multi-level, location-based

Lookup: Routing table for next-hop IP; ARP next-hop IP -> MAC address

- What are we naming?
- Hosts

• ...

- CS department webserver
- COS316 webserver

Values:

Names:

Allocation:

- Who will use the names?
- People
- Goals for name?
 - Memorable
 - Reflect organizational hierarchical
 - e.g., educational?, princeton?
- Hostnames are variable length, hierarchical strings
 - www.cs.princeton.edu vs cos316.princeton.edu

Values: Hosts

Names:

Allocation:

- Globally unique and organizationalhierarchy-based names?
- Multi-level allocation? √
 - IANA assigns top-level domains
 - .com, .edu, ...
 - Registries assigns second-level domains
 - princeton.edu
 - Organizations assign subdomains
 - cs.princeton.edu OR cos316.princeton.edu
 - And so on...
 - www.cs.princeton.edu

Values: Hosts

Names: hierarchical variable-length strings

Allocation:

- How to map cos316.princeton.edu to host?
- Map to IP address, give to networking layer
 - Domain Name System (DNS) maps a hostname to an IP address

Names: hierarchical variable-length strings

Values: Hosts

Allocation: Multi-level, organization based

Lookup: DNS maps hostname to IP

- How to map cos316.princeton.edu to host?
- Map to IP address, give to networking layer
 - Domain Name System (DNS) maps a hostname to an IP address

Names: hierarchical variable-length strings

Values: Hosts

Allocation: Multi-level, organization based

Lookup: DNS maps hostname to IP

Different Layers, Different Namer

- Host name (e.g., www.cs.princeton.edu)
 - Mnemonic, variable-length, appreciated by humans
 - Hierarchical, based on organizations
- IP address (e.g., 128.112.136.61)
 - Numerical 32-bit address appreciated by routers
 - Hierarchical, based on organizations and location
- MAC address (e.g., 00:15:C5:49:04:A9)
 - Numerical 48-bit address appreciated by adapters
 - Hierarchical, based on vendors, unrelated to location

Hierarchical Allocation Processes

• Host name: www.cs.princeton.edu

- Domain: registries for each top-level domain (e.g., .edu)
- Host name: local administrator assigns to each host

• IP addresses: 128.112.136.61

- Prefixes: ICANN, regional Internet registries, and ISPs
- Hosts: static configuration, or dynamic using DHCP

• MAC addresses: 00:15:C5:49:04:A9

- Blocks: assigned to equipment vendors by the IEEE
- Adapters: assigned by the vendor from its block

Different Layers, Different Lookup Protocols

- Host name -> IP address via Domain Name System (DNS)
- Destination IP address to next-hop address via routing table (populated by network routing protocols)
- Next-hop IP address to MAC address via ARP
- MAC address to network interface via local flooding (or learning)

Network Naming Conclusion

- Network names identify remote endpoints
- Different layers, different names
 - Who will use the name?
- Multi-level hierarchical allocation
 - Goals: Unique √, reflect organizations √, location-based?
- Different layers, different lookup protocols
 - We covered ARP, COS 461 covers them all $\ensuremath{\textcircled{\odot}}$
- More on network layers in a few weeks