Introduction to Caching

Bl vET | Nov M
TES | TAM
il Ex | TvMm|f]

COS 316: Principles of Computer System Design
Lecture 11

Amit Levy & Ravi Netravali

Memory Bus

o

Memory

CPU connected directly to memory

How long to run this code?

* Characteristics
e CPU Instructions & Register accesses: 0.5 ns (2 GHz)

* Memory accesses: 50 ns

int arr[1000];

for (1 = 0; 1 < arr.len(); i++) { ++arr[i]; }

mov
loop: ldr
subs
add
str

bne

I3,

rl, [r0]
r3, r3,
rli, r1,
rl, [r0],

<loop>

1. 2.5 microseconds (2,505 ns)
2. 250 microseconds (250,000 ns)
3. 101 microseconds (101,000.5 ns)

How long to run this code?

* Characteristics
e CPU Instructions & Register accesses: 0.5 ns (2 GHz)
* Memory accesses: 50 ns

int arr[1000];

for (1 = 0; 1 < arr.len(); i++) { ++arr[i]; }

mov T3, #1000 1. 2.5 microseconds (2,505 ns)

loop: ldr 11, [z0] 2. 250 microseconds (250,000 ns)

subs r3, r3, #1 3. 101 microseconds (101,000.5 ns

add r1, ri, #1
1*0.5 + 1000*(2*50 + 2*0.5) = 101,000.5 ns
str r1, [x0], #4

bne <loop>

Why not just make everything fast?

Type Access Time Typical Size $/MB
Registers < 0.5ns ~256 bytes $1000
SRAM/"Cache” 5ns 1-4MB $100
DRAM/"Memory” 50ns GBs $0.01
Solid state 2018 TBs $0.0001
Magnetic Disk 5ms 10-100s 7B $0.000001

High cost for fast storage (inverse relationship
between cost and performance)!

A Solution: Caching

* Keep all data in bigger, cheaper, slower storage
* Keep copies of active data in smaller, more expensive, faster storage

RIRINININ
4 h

CPU Cache Memory Bus Memory

OO0
OO

- /
NIRININEN

What do we cache?

e Data stored verbatim in slower storage
* Previous computations — recomputations are a kind of slow storage’

* Examples

* CPU memory hierarchy
File system page buffer
Domain Name System (DNS)
Content Distribution Networks (CDN)
Web browser caches
Database caches

How long to run this code?

* Characteristics

e CPU Instructions & Register accesses: 0.5 ns (2 GHz)
* CPU cache accesses: 5 ns
* Memory accesses: 50 ns

mov 13, #1000

loop: ldr 11, [r0]
subs 13, 13, #1 It’s complicated -- not enough info

to answer this yet!
add rl1, ri1, #1

str rl1l, [x0], #4

bne <loop>

Evaluating cache effectiveness

* Hit: when a requested item was in the cache
* Miss: when a requested item was not in the cache

* Hit ratio and Miss ratio: proportion of hits and misses, respectively

e Hit time and Miss time: time to access item in the cache and not in
the cache, respectively

When is caching effective?

* Which of these workloads could we cache effectively?

Repeated Access

Random Access

Sequential access

A few popular items

E.e. most soclial media

0.2 0.3 0.4 0.5 0.6

0.7

No pattern to accesses

E.g. large hash tables

0.8

Access Items In order

E.g. streaming a video

What influences cache effectiveness?

* Temporal locality: nearness in time
* Data accessed now was probably accessed recently
» Useful data tends to continue to be useful

 Spatial locality: nearness in name
* Data accessed now is “near” previously accessed data
* Memory addresses, files in the same directory, frames in a video, etc.

Effective access time

e Effective access time is a function of:
* Hit and Miss ratio
 Hit and Miss times

* teffective = (hit_ratio)*thit + (1_ hit_ratio) * tmiss
* Also referred to as AMAT (Average Memory Access Time)

Characterizing a caching system

* Properties that affect what cache is suitable for and how to effectively
use a cache

e Effective access time

Look-aside vs. Look-through

Write-through vs. Write-back

Write-allocation

Eviction policy

Who handles misses?

 What happens when a requested item is not in the cache?

MISS
Request item a > Cache

OO
[)

Backing
store

\ J
HRNRERNEN

JOO00

JUoom

Look-aside

MISS
Request item d Cache

Hil

ltem g not in cache

A 00000
euestitema / \

Packing

store
* Advantages: easy to implement, flexible

Joooo

- J
Jouoo

* Disadvantages: application handles consistency, can be slower on misses

Look-through

d MISS

: a

Re uest item Cache Re ™
a —

” St ltem

%m%

DDDDD

Jogon

-

~

Backing

-

store

J

Joooo

00000

* Advantages: helps maintain consistency, simple to program against

* Disadvantages: harder to implement, less flexible

Handling Writes

 Caching creates a replica/copy of the data

* When you write, the data needs to be synchronized at some point

e But when?

Write-through

* Write to backing store on every update

* Advantages
e Cache and memory are always consistent
* Eviction is cheap
e Easy to implement

e Disadvantages
* Writes are at least as slow as writes to the backing store

Write-back

e Update only in the cache; write to backing store only when evicting
item from cache

* Advantages

* Writes always at cache speed
* Multiple writes to same item combined
* Batch writes of related items

e Disadvantages
* More complex to maintain consistency
* Eviction is more expensive

Write-allocate vs. Write-no-allocate

* When writing to items not currently in the cache, do we bring them
into the cache?

* Yes == Write-allocate

* Advantage: exploits temporal locality since written data is likely to be
accessed again soon

* No == Write-no-allocate
* Advantage: avoids spurious evictions if data is not accessed soon

Eviction policies
* Which items to evict from cache when we run out of space?

* Many algorithms!
e Least Recently Used (LRU), Most Recently Used (MRU)
* Least Frequently Used (LFU)
e First-in-First-Out (FIFO), Last-In-First-Out (LIFO)

* Deciding factors: workload and performance requirements

Challenges in Caching

* Speed: making the cache itself fast
e Cache Coherence: dealing with out-of-sync caches
* Performance: maximizing hit ratio

 Security: avoiding information leakage through the cache

Characterizing a Caching System

e Effective access time

* Look-aside vs. Look-through Useful for designers of
caches and application

* Write-through vs. Write-back developers (using caches)!

* Write-allocate vs. Write-no-allocate

e Eviction policy

Remainder of this section

* Caching in the CPU memory hierarchy
 CDN (Web) Caching
* Research: cache optimizations in mobile apps (compute and network)

* Next assignment: in-memory web application cache

