
Introduction to Caching

COS 316: Principles of Computer System Design
Lecture 11

Amit Levy & Ravi Netravali



CPU connected directly to memory



How long to run this code?
• Characteristics
• CPU Instructions & Register accesses: 0.5 ns (2 GHz)
• Memory accesses: 50 ns

How long to run this code?

Characteristics
• CPU Instructions & Register accesses: 0.5ns (2GHz)

• Memory access: 50ns

KPV CTT=����?�
for 
K � �� K � CTT�NGP
�� K� ] CTT=K?� _

OQX T�� �����
loop: NFT T�� =T�?

UWDU T�� T�� ��
CFF T�� T�� ��
UVT T�� =T�?� ��
DPG �NQQR 

3

How long to run this code?

Characteristics
• CPU Instructions & Register accesses: 0.5ns (2GHz)

• Memory access: 50ns

KPV CTT=����?�
for 
K � �� K � CTT�NGP
�� K� ] CTT=K?� _

OQX T�� �����
loop: NFT T�� =T�?

UWDU T�� T�� ��
CFF T�� T�� ��
UVT T�� =T�?� ��
DPG �NQQR 

3

1. 2.5 microseconds (2,505 ns)
2. 250 microseconds (250,000 ns)
3. 101 microseconds (101,000.5 ns)



How long to run this code?
• Characteristics
• CPU Instructions & Register accesses: 0.5 ns (2 GHz)
• Memory accesses: 50 ns

How long to run this code?

Characteristics
• CPU Instructions & Register accesses: 0.5ns (2GHz)

• Memory access: 50ns

KPV CTT=����?�
for 
K � �� K � CTT�NGP
�� K� ] CTT=K?� _

OQX T�� �����
loop: NFT T�� =T�?

UWDU T�� T�� ��
CFF T�� T�� ��
UVT T�� =T�?� ��
DPG �NQQR 

3

How long to run this code?

Characteristics
• CPU Instructions & Register accesses: 0.5ns (2GHz)

• Memory access: 50ns

KPV CTT=����?�
for 
K � �� K � CTT�NGP
�� K� ] CTT=K?� _

OQX T�� �����
loop: NFT T�� =T�?

UWDU T�� T�� ��
CFF T�� T�� ��
UVT T�� =T�?� ��
DPG �NQQR 

3

1. 2.5 microseconds (2,505 ns)
2. 250 microseconds (250,000 ns)
3. 101 microseconds (101,000.5 ns)

1*0.5 + 1000*(2*50 + 2*0.5) = 101,000.5 ns



Why not just make everything fast?

High cost for fast storage (inverse relationship 
between cost and performance)!

Why not just make everything fast?

Type Access Time Typical Size $/MB

Registers � ���ԝԢ ~ 56 bytes �����
SRAM/”Cache” �ԝԢ -4MB ����
DRAM/”Memory” ��ԝԢ GBs �����
Solid state ��ᅷԈ TBs �������
Magnetic Disk �ԜԢ - s TB ���������

• High cost of fast storage

• Physical limitations

• Not necessarily possible—e.g. accessing a web page across the world

5



A Solution: Caching

• Keep all data in bigger, cheaper, slower storage
• Keep copies of active data in smaller, more expensive, faster storage

A Solution: Caching

What is caching?

• Keep all data in bigger, cheaper, slower storage

• Keep copies of “active” data in smaller, more expensive, faster storage

Figure 2: CPU + Cache + Memory

6



What do we cache?

• Data stored verbatim in slower storage
• Previous computations – recomputations are a kind of `slow storage’
• Examples
• CPU memory hierarchy
• File system page buffer
• Domain Name System (DNS)
• Content Distribution Networks (CDN)
• Web browser caches
• Database caches



How long to run this code?
• Characteristics
• CPU Instructions & Register accesses: 0.5 ns (2 GHz)
• CPU cache accesses: 5 ns
• Memory accesses: 50 ns

How long to run this code?

Characteristics
• CPU Instructions & Register accesses: 0.5ns (2GHz)

• Memory access: 50ns

KPV CTT=����?�
for 
K � �� K � CTT�NGP
�� K� ] CTT=K?� _

OQX T�� �����
loop: NFT T�� =T�?

UWDU T�� T�� ��
CFF T�� T�� ��
UVT T�� =T�?� ��
DPG �NQQR 

3

It’s complicated -- not enough info 
to answer this yet!



Evaluating cache effectiveness

• Hit: when a requested item was in the cache
• Miss: when a requested item was not in the cache

• Hit ratio and Miss ratio: proportion of hits and misses, respectively

• Hit time and Miss time: time to access item in the cache and not in 
the cache, respectively



When is caching effective?

• Which of these workloads could we cache effectively?



What influences cache effectiveness?

• Temporal locality: nearness in time
• Data accessed now was probably accessed recently
• Useful data tends to continue to be useful

• Spatial locality: nearness in name
• Data accessed now is “near” previously accessed data
• Memory addresses, files in the same directory, frames in a video, etc.



Effective access time

• Effective access time is a function of:
• Hit and Miss ratio
• Hit and Miss times

• teffective = (hit_ratio)*thit + (1– hit_ratio) * tmiss
• Also referred to as AMAT (Average Memory Access Time)



Characterizing a caching system

• Properties that affect what cache is suitable for and how to effectively 
use a cache

• Effective access time

• Look-aside vs. Look-through

• Write-through vs. Write-back

• Write-allocation

• Eviction policy



Who handles misses?

• What happens when a requested item is not in the cache?

Who handles misses?

What happens when a requested item is not in the cache?

Figure 3: User requests an item not in the cache
14



Look-aside

• Advantages: easy to implement, flexible
• Disadvantages: application handles consistency, can be slower on misses

Look-aside

Figure 4: Look-aside Cache

• Advantages: easy to implement, flexible

• Disadvantages: application handles consistency, can be slower on misses

15



Look-through

• Advantages: helps maintain consistency, simple to program against
• Disadvantages: harder to implement, less flexible

Look-through

Figure 5: Look-through Cache

• Advantages: helps maintain consistency, simple to program against

• Disadvantages: harder to implement, less flexible

16



Handling Writes

• Caching creates a replica/copy of the data

• When you write, the data needs to be synchronized at some point

• But when?



Write-through

• Write to backing store on every update

• Advantages
• Cache and memory are always consistent
• Eviction is cheap
• Easy to implement

• Disadvantages
• Writes are at least as slow as writes to the backing store



Write-back

• Update only in the cache; write to backing store only when evicting 
item from cache

• Advantages
• Writes always at cache speed
• Multiple writes to same item combined
• Batch writes of related items

• Disadvantages
• More complex to maintain consistency
• Eviction is more expensive



Write-allocate vs. Write-no-allocate

• When writing to items not currently in the cache, do we bring them 
into the cache?

• Yes == Write-allocate
• Advantage: exploits temporal locality since written data is likely to be 

accessed again soon

• No == Write-no-allocate
• Advantage: avoids spurious evictions if data is not accessed soon



Eviction policies

• Which items to evict from cache when we run out of space?

• Many algorithms!
• Least Recently Used (LRU), Most Recently Used (MRU)
• Least Frequently Used (LFU)
• First-in-First-Out (FIFO), Last-In-First-Out (LIFO)
• …

• Deciding factors: workload and performance requirements



Challenges in Caching

• Speed: making the cache itself fast

• Cache Coherence: dealing with out-of-sync caches

• Performance: maximizing hit ratio

• Security: avoiding information leakage through the cache



Characterizing a Caching System

• Effective access time

• Look-aside vs. Look-through

• Write-through vs. Write-back

• Write-allocate vs. Write-no-allocate

• Eviction policy

Useful for designers of 
caches and application 
developers (using caches)!



Remainder of this section

• Caching in the CPU memory hierarchy

• CDN (Web) Caching

• Research: cache optimizations in mobile apps (compute and network)

• Next assignment: in-memory web application cache


