
Web Caching

COS 316: Principles of Computer System Design
Lecture 12

Amit Levy & Ravi Netravali

Downloading a Web Page

www.youtube.com

User visits https://www.youtube.com

The Internet

Downloading a Web Page (https://www.youtube.com)

www.youtube.com
142.251.41.14

www.youtube.co
m?

142.251.41.14

End-to-end connection (TCP)

Secure session (TLS)

Web messages (HTTP)

Multiple Problems

• User latency
• Round-trips to query multiple DNS servers
• Multiple round-trips with the Web server
• Delivery of a (possibly large) Web item

• Server overhead
• Handling many requests from many clients
• Financial costs to deploy enough servers

• Network bandwidth
• Traffic on many links in multiple networks
• Financial costs for the affected networks

Caching to the Rescue: Domain Name System

• What to cache?
• Mapping of popular names to IP addresses

• E.g., www.youtube.com à 142.251.41.14
• Mapping of parts of names to DNS server IPs

• E.g., .com top-level domain à 192.26.92.30

Caching to the Rescue: Domain Name System

• What to cache?
• Mapping of popular names to IP addresses

• E.g., www.youtube.com à 142.251.41.14
• Mapping of parts of names to DNS server IPs

• E.g., .com top-level domain à 192.26.92.30

requesting host

root DNS server

local DNS
server

1

2
3

4

5

6

authoritative
DNS server

78

.com DNS server

Caching to the Rescue: Domain Name System

• What to cache?
• Mapping of popular names to IP addresses

• E.g., www.youtube.com à 142.251.41.14
• Mapping of parts of names to DNS server IPs

• E.g., .com top-level domain à 192.26.92.30

• Where to cache?
• Local DNS server (e.g., for the campus)
• Client machine (e.g., user’s browser)

• How to avoid stale information?
• Cached entries have a limited “time to live” requesting host

root DNS server

local DNS
server

1

2
3

4

5

6

authoritative
DNS server

78

.com DNS server

Caching to the Rescue: Communication Channel

• End-to-end communication
• TLS: confidentiality, integrity, and authenticity
• TCP: ordered, reliable delivery of byte stream

• Establishing the channel is expensive
• Communication delays, creating data structures, and computing keys

• Exploit temporal locality by reusing the channels

Transmission Control Protocol (TCP)

Transport Layer Security (TLS)

Caching to the Rescue: Web Items

•Cache Web items closer to the client
• Reduce latency
• Reduce server overhead
• Reduce use of network bandwidth

Web
Cache

cache hit!

Web Caching: Outline

•Cache replacement
• Popularity distributions
• Replacement algorithms

•Cache consistency
• Dynamic items
• Cache validation

•Cache placement
• Client’s web browser
• Client’s network
• Server’s network
• Third party (CDN)

•Content Distribution Network

Cache Replacement

Web Caching Should Work Well!

1 10 100 1000 10,000 …
1

10

100

1000

10,000

Popularity Rank

Number of
Requests

Zipf Distribution
Item of rank k has
frequency ~ 1/ka

Web Cache Hit

G?

A B C

 D E F

 G H I

 J K L

G

On cache hit, retrieve the object from the cache!

Web Cache Miss

X?

A B C

 D E F

 G H I

 J K L

X

X?

X

X

If I want to store X, what do I get rid of to make space?

Cache Replacement Algorithms

•Which object to evict?
• Least likely to be used again soon
• Least expensive to fetch again

• Example algorithms
• First in first out (FIFO)
• Least recently used (LRU)
• Least frequently used (LFU)

• (Note: all fully associative today)

A B C

 D E F

 G H I

 J K L

X

Cache Replacement: First-In-First-Out (FIFO)

• Evict objects added to cache longest ago
•Very simple!

• Three-item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g

•Can we do better?

Least Recently Used (LRU)

• Evict object used longest ago
• “Objects used more recently are more likely to be accessed again”
• Exploits temporal locality

• Implementation: Update access time for every hit

• Three-item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g
• Request stream: h, h, h, i, j, k, h

Least Frequently Used (LFU)

• Evict object with fewest hits
• “Objects used more often are more likely to be accessed again”
• If tie, use LRU

• Implementation: Update access count for every hit

• Three-item cache example:
• Request stream: a, b, a, c, a, d, a, e, a, f, g
• Request stream: h, h, h, i, j, k, h
• Request stream: l, l, m, n, o, m

Clairvoyant (Belady): Offline Optimal Caching

• What is the best a caching algorithm could do?
• Offline: uses knowledge of the future
• (Can’t use in practice)

• Evict the object with the furthest next access time
• Worst object to keep in the cache

• Three-item cache example:
• Request stream: h, h, h, i, j, k, h
• Request stream: l, l, m, n, o, m

Edge Cache with Different Sizes

��

��

��

��

��

��

�
���
��
���

����������

����

59%

20

From “An Analysis of
Facebook Photo Caching,”
at Symposium on Operating
System Principles, 2013.

https://www.cs.princeton.edu/~wlloyd/papers/fb-photo-caching-sosp13.pdf
https://www.cs.princeton.edu/~wlloyd/papers/fb-photo-caching-sosp13.pdf

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

����

Edge Cache with Different Sizes

65% 68%
59%

21

Edge Cache with Different Sizes

• “Infinite” size ratio needs 45x of capacity

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

����

Infinite Cache

65% 68%
59%

22

Edge Cache with Different Algos

• LRU > LFU > FIFO

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

���
���
����

Infinite Cache

23

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

�����
���
���
����

Edge Cache with Different Algorithms

• S4LRU is a more complex algorithm, uses recency and frequency

68%

1/3x

Infinite Cache

24

59%

Edge Cache with Different Algos

• Clairvoyant (Bélády) shows we can do much better!

��

��

��

��

��

��

� �� ��

�
���
��
���

����������

�����������
�����
���

���
����

Infinite Cache

25

Cache Consistency

Some Web Content is Not Cacheable

•Dynamic content
• E.g., stock prices, scores, web cams

•Content generated by scripts
• Results depend on the specific parameters
• E.g., https://www.google.com/search?q=php+script+url

•Personalized content
• E.g., based on cookie sent by the browser

• Encrypted content
• Cannot decrypt without the appropriate key

Cache Consistency Challenges

Web cache needs to know
• Whether to cache an item
• How long to cache an item
• Whether to check an item’s freshness
• Whether it is okay to return a stale item
• Whether the item has sensitive data

Shared
CachePersonal

Cache

Cache Consistency Challenges

Web cache needs to know
• Whether to cache an item
• How long to cache an item
• Whether to check an item’s freshness
• Whether it is okay to return a stale item
• Whether the item has sensitive data

Server knows the content
• Whether the item is dynamic
• How often the item changes
• Whether the item has changed
• Whether stale information is useful
• Whether item contains sensitive data

Shared
CachePersonal

Cache

Scalability challenge: the server cannot remember every client that has cached an item

HTTP Response Header for Cache Control

•Whether to cache
• no store: no cache should store it

•Who should cache
• private: only a private cache (e.g., browser)
• public: any cache, including shared ones

• How long to cache
• max-age=N: for N seconds
• must-revalidate: check with the server (don’t return stale item)

Cache-Control: public, max-age=86400, must-revalidate

Cache Validation: Client Checks Freshness

Personal
Cache

GET /index.html
“if <this version> is stale”

304 Not Modified

Cache Validation: Client Checks Freshness

How do they identify the “version”?
• Timestamp
• When the item was modified by the server
• E.g., Last-Modified: Wed, 21 Oct 2015 07:28:00 GMT

• Version number
• Entity tag provided by the server
• E.g., ETag: "33a64df551425fcc55e4d42a148795d9f25f89d4"

Personal
Cache

GET /index.html
“if <this version> is stale”

304 Not Modified

Cache Placement

Client Machine (e.g., Browser)

Advantages
• Very low latency
• Preserves access bandwidth
• Available when disconnected

Disadvantages
• Low hit rate due to “cold” misses
• Many cache consistency checks
• Incomplete logs at the server

Personal
Cache

Client Network (Forward Proxy Cache)

Advantages
• Low latency
• Preserves enterprise bandwidth
• Hits for locally popular content

Disadvantages
• Cost to deploy the cache
• Many consistency checks
• Incomplete logs at the server

Shared
Cache

Server Network (Reverse Proxy Cache)

Advantages
• High hit rate across global users
• Greater cooperation with server
• Complete request logs for server
• Preserves server bandwidth

Disadvantages
• Costs to deploy the cache
• Does not reduce latency much
• Consumes wide-area bandwidth

Shared
Cache

Content Distribution Network (CDN)

• Outsourced caching infrastructure
• Caching for clients and servers
• Dedicated equipment and software
• Trained staff, best practices, etc.

• Coordination with the server
• Generating non-cacheable content
• Providing detailed measurement data

• Smart cache placement
• Many caches: handle large request load
• Close to many clients: reduce latency More than 4200 locations in 135 countries

CDN Challenges

• Where to place edge sites?
• Close to many clients, with reasonable cost

• Where to replicate a server’s content?
• Many edge sites à duplicated data
• Few edge sites à larger client latency

• How to direct a client to an edge site?
• Proximity: for low latency
• Light load: to reduce congestion

• How to manage each cache?
• Maximize hit rate?
• Minimize miss penalty?
• Fairness across origin servers?

c
c

c c

cache

a.
co

m

b.
co

m

c.
co

m

CDN Challenges

• Where to place edge sites?
• Close to many clients, with reasonable cost

• Where to replicate a server’s content?
• Many edge sites à duplicated data
• Few edge sites à larger client latency

• How to direct a client to an edge site?
• Proximity: for low latency
• Light load: to reduce congestion

• How to manage each cache?
• Maximize hit rate?
• Minimize miss penalty?
• Fairness across origin servers?

c
c

c c

cache

a.
co

m

b.
co

m

c.
co

m

CDN Effectiveness

77.2M

26.6M
11.2M

7.6M

BackendBrowser
Cache

Edge
Cache

Origin
Cache

CDNClient Data Center

65.5%
58.0%

31.8%

R

Traffic Share 65.5% 20.0% 4.6% 9.9%

From “An Analysis of
Facebook Photo Caching,”
at Symposium on Operating
System Principles, 2013.

https://www.cs.princeton.edu/~wlloyd/papers/fb-photo-caching-sosp13.pdf
https://www.cs.princeton.edu/~wlloyd/papers/fb-photo-caching-sosp13.pdf

Conclusions

• Downloading a Web page
• Name resolution, transport connection, secure session, web messages

• Benefits of caching
• Reduces user latency, server load, and network bandwidth

• Cache replacement
• Maximize hit rate by trying to predict the future

• Cache consistency
• Efficient ways to avoid returning unnecessarily stale responses

• Content distribution networks
• Caching close to clients, while working on behalf of the servers

