
Allocating Dynamic Kernel Memory in
Low-Memory Microcontrollers

Amit Levy & Ravi Netravali

COS 316: Principles of Computer System Design

2

● Fitness watches support different activities

● USB security keys perform multiple functions
– U2F, SSH, GPG, HOTP

● Sensor networks run several experiments at once

Microcontrollers Becoming Platforms

3

● Run all code in a single address space

● Trust all code

● Can’t update components

● Can’t recover components

Embedded Software Isn’t Ready

4

Safe Multiprogramming
by Isolating Applications

and OS Services

5

● Limited memory: 64 kB of RAM
– Memory isolation techniques limit granularity
– malloc can fail!

● No page virtualization
– Instead protection bits for 8 memory regions

● Moore’s Law doesn’t fix the problem
– Sleep current is limiting factor
– Memory capacity < 10x in 15 years

Can’t Use Normal Isolation Techniques

6

Microcontrollers demand
new multiprogramming

abstractions.

7

● Use type safety to isolate most of the system

● Use memory isolation sparingly
– Preemtive scheduling
– Recover or update components at runtime

● Support dynamic workloads without malloc

How to Multiprogram a Microcontroller

● Kernel written in Rust
● Processes abstraction using Memory Protect Unit

(MPU)
● Grants: mechanism to account for dynamic workloads

Tock

8

1. Security Model & Design Principles

2. Two Isolation Mechanisms

3. Grants

Outline

9

Let’s consider a programmable USB security key

Security in a Multiprogrammable MCU

10

● Build the hardware

● Combine core kernel, MCU-specific glue code & drivers

● Complete control over firmware

Board Integrators

11

● Build most kernel functionality

● Source code available to board integrators

● But auditing won’t catch all bugs

Kernel Component Developers

12

● Implement end-user functionality

● “Third-party” developers: unknown to board integrators

● Modeled as malicious

Application Developers

13

Design Principles
● Isolation guarantees should be clear

– What exactly can a component do?

● System should be dependable
– Unanticipated runtime behavior shouldn’t cause crashes

● Maximize concurrency
– I/O operations can overlap

● Minimize resource consumption
– Resources don’t dictate isolation granularity

● Maximize programmability
– Applications will have unknown behavior

14

Tock’s Two Isolation Models

Capsules
● Compile-time
● Kernel
● Limited trust
● Fine grained

Processes
● Runtime
● Applications
● Potentially malicious
● Coarse grained

15

Capsules

● A Rust module and structs

● Event-driven execution

● Communicate via references & method calls

16

Capsule Isolation
struct DMAChannel {
 length: u32,
 base_ptr: *const u8,
}

impl DMAChannel {
 fn set_dma_buffer(&self, buf: &'static [u8]) {
 self.length = buf.len();
 self.base_ptr = buf.as_ref();
 }
}

● Exposes the DMA base pointer and length as a Rust slice*

● Type-safety guarantees user has access to memory

17

Processes

● Hardware-isolated concurrent executions of programs
– Logical memory region: stack, heap, static variables
– Uses the ARM Memory Protection Unit (MPU) to protect memory

regions without virtualization

● Scheduled preemptively

● System calls & IPC for communication

● Updated dynamically

18

Processes vs. Capsules

Processes
● Isolated at run-time

● Dedicated stack & heap

● Preemptive

● Any language

● Context switch

● Replaceable at runtime

Capsules
● Isolated by compiler

● Shared stack, no heap

● Cooperative

● Rust only

● Method calls

● Replaceable at compile-time

Different isolation mechanisms for different use cases

19Board Integrators

Kernel component developers

Application Developers

20

A static kernel needs
resources to respond to
unpredictable process

requests

21

Working Example: Timer Driver

Software Timer Driver

HW Alarm
Kernel

22

Statically allocating timer state?

Static allocation must trade off memory efficiency and maximum concurrency

Software Timer Driver

23

Software Timer Driver

What About Dynamic Allocation?

24

Software Timer Driver

What About Dynamic Allocation?

25

What About Dynamic Allocation?

Software Timer Driver

26

What About Dynamic Allocation?

Software Timer Driver

27

What About Dynamic Allocation?

Software Timer DriverAES Driver Bluetooth Driver

Can lead to unpredictable shortages.
One process’s demands impacts capabilities of others.

28

Separate kernel heap for
each process

29

Grants

● Safely account for process-specific kernel heaps

● Allocations for one process do not affect others

● System proceeds if one grant section is exhausted

● All process resources freed on process termination

30

Software Timer Driver

Grants:
Kernel heap safely borrowed from

processes

Grants balance safety and reliability of static allocation
with flexibility of dynamic allocation

31

Grants uses the type-system to ensure references only accessible
when process is live

fn enter<'a, F>(&'a self, pid: ProcId, f: F) → where
 F: for<'b> FnOnce(&'b mut T)

// Can’t operate on timer data here

timer_grant.enter(process_id, |timer| {
 // Can operate on timer data here
 if timer.expiration > cur_time {
 timer.fired = true;
 }
});

// timer data can’t escape here

32

● Extremely limited memory limits isolation with
traditional mechanisms

● Capsules decouple isolation from concurrency
● Still need dynamic allocations in static components
● Grants “borrow” memory from processes to service

process requests
● Need to ensure grants for different processes can’t

reference each other

Resource Management in Tock

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

