
Allocating Dynamic Kernel Memory in 
Low-Memory Microcontrollers

Amit Levy & Ravi Netravali

COS 316: Principles of Computer System Design



2

● Fitness watches support different activities

● USB security keys perform multiple functions
– U2F, SSH, GPG, HOTP

● Sensor networks run several experiments at once

Microcontrollers Becoming Platforms
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● Run all code in a single address space

● Trust all code

● Can’t update components

● Can’t recover components

Embedded Software Isn’t Ready
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Safe Multiprogramming 
by Isolating Applications 

and OS Services
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● Limited memory: 64 kB of RAM
– Memory isolation techniques limit granularity
– malloc can fail!

● No page virtualization
– Instead protection bits for 8 memory regions

● Moore’s Law doesn’t fix the problem
– Sleep current is limiting factor
– Memory capacity < 10x in 15 years

Can’t Use Normal Isolation Techniques
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Microcontrollers demand 
new multiprogramming 

abstractions.
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● Use type safety to isolate most of the system

● Use memory isolation sparingly
– Preemtive scheduling
– Recover or update components at runtime

● Support dynamic workloads without malloc

How to Multiprogram a Microcontroller

● Kernel written in Rust
● Processes abstraction using Memory Protect Unit 

(MPU)
● Grants: mechanism to account for dynamic workloads

Tock
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1. Security Model & Design Principles

2. Two Isolation Mechanisms

3. Grants

Outline
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Let’s consider a programmable USB security key

Security in a Multiprogrammable MCU
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● Build the hardware

● Combine core kernel, MCU-specific glue code & drivers

● Complete control over firmware

Board Integrators
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● Build most kernel functionality

● Source code available to board integrators

● But auditing won’t catch all bugs

Kernel Component Developers
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● Implement end-user functionality

● “Third-party” developers: unknown to board integrators

● Modeled as malicious

Application Developers
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Design Principles
● Isolation guarantees should be clear

– What exactly can a component do?

● System should be dependable
– Unanticipated runtime behavior shouldn’t cause crashes

● Maximize concurrency
– I/O operations can overlap

● Minimize resource consumption
– Resources don’t dictate isolation granularity

● Maximize programmability
– Applications will have unknown behavior
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Tock’s Two Isolation Models

Capsules
● Compile-time
● Kernel
● Limited trust
● Fine grained

Processes
● Runtime
● Applications
● Potentially malicious
● Coarse grained
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Capsules

● A Rust module and structs

● Event-driven execution

● Communicate via references & method calls
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Capsule Isolation
struct DMAChannel {
    length: u32,
    base_ptr: *const u8,
}

impl DMAChannel {
  fn set_dma_buffer(&self, buf: &'static [u8]) {
    self.length = buf.len();
    self.base_ptr = buf.as_ref();
  }
}

● Exposes the DMA base pointer and length as a Rust slice*

● Type-safety guarantees user has access to memory
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Processes

● Hardware-isolated concurrent executions of programs
– Logical memory region: stack, heap, static variables
– Uses the ARM Memory Protection Unit (MPU) to protect memory 

regions without virtualization

● Scheduled preemptively

● System calls & IPC for communication

● Updated dynamically
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Processes vs. Capsules

Processes
● Isolated at run-time

● Dedicated stack & heap

● Preemptive

● Any language

● Context switch

● Replaceable at runtime

Capsules
● Isolated by compiler

● Shared stack, no heap

● Cooperative

● Rust only

● Method calls

● Replaceable at compile-time

Different isolation mechanisms for different use cases



19Board Integrators

Kernel component developers

Application Developers
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A static kernel needs 
resources to respond to 
unpredictable process 

requests
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Working Example: Timer Driver

Software Timer Driver

HW Alarm
Kernel
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Statically allocating timer state?

Static allocation must trade off memory efficiency and maximum concurrency

Software Timer Driver
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Software Timer Driver

What About Dynamic Allocation?
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Software Timer Driver

What About Dynamic Allocation?
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What About Dynamic Allocation?

Software Timer Driver
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What About Dynamic Allocation?

Software Timer Driver
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What About Dynamic Allocation?

Software Timer DriverAES Driver Bluetooth Driver

Can lead to unpredictable shortages.
One process’s demands impacts capabilities of others.
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Separate kernel heap for 
each process
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Grants

● Safely account for process-specific kernel heaps

● Allocations for one process do not affect others

● System proceeds if one grant section is exhausted

● All process resources freed on process termination
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Software Timer Driver

Grants:
Kernel heap safely borrowed from 

processes

Grants balance safety and reliability of static allocation 
with flexibility of dynamic allocation
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Grants uses the type-system to ensure references only accessible 
when process is live 

fn enter<'a, F>(&'a self, pid: ProcId, f: F) → where
    F: for<'b> FnOnce(&'b mut T)

// Can’t operate on timer data here

timer_grant.enter(process_id, |timer| {
    // Can operate on timer data here
    if timer.expiration > cur_time {
        timer.fired = true;
    }
});

// timer data can’t escape here
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● Extremely limited memory limits isolation with 
traditional mechanisms

● Capsules decouple isolation from concurrency
● Still need dynamic allocations in static components
● Grants “borrow” memory from processes to service 

process requests
● Need to ensure grants for different processes can’t 

reference each other

Resource Management in Tock
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