Introduction to Concurrency
& Logical Time

Bl vET | Nov M
TES | TAM
il Ex | TvMm|f]

COS 316: Principles of Computer System Design
Lecture 15

Amit Levy & Ravi Netravali




Concurrency
* Multiple things happening at the same time

* Primary benefit is better performance 4 °
* Do more work in the same amount of time

w“h 1+ &
* Complete fixed amount work in less time 'y\ x
e Better utilize resources @V , L)' <>
* Primary cost is complexity
e Hard to reason about

* Hard to get right
* (Systems deal with it, not applications, ... to some extent)



Concurrency Examples

Run a computation on Run a computation on all
all cores in a machine cores on 100K machines!



Concurrency Examples

Run a computation on Run a computation on all
all cores in a machine cores on 100K machines!

Many applications
outstanding writes to disk write to the disk



Distributed Systems

1) Multiple computers
2) Connected by a network Concurrency is Inevitable!
3) Doing something together



Motivation: Multi-site database replication

* A New York-based bank wants to make its transaction ledger database resilient
to whole-site failures

* Replicate the database, keep one copy in sf, one in nyc

San
Francisco




The consequences of concurrent updates

* Replicate the database, keep one copy in sf, one in nyc
* Client sends query to the nearest copy
* Client sends update to both copies




The consequences of concurrent updates

* Replicate the database, keep one copy in sf, one in nyc
* Client sends query to the nearest copy
* Client sends update to both copies




What to Do?

* Handle one client at a time?
* Deposit $1OQ in both replicas, ONE PERSON
then pay 1% interest in both replicas AT A TIME

* Pay 1% interest in both replicas, PLEASE
then deposit $100 in both replicas

* How to enforce a consistent order?
e Based on wall-clock time?




RFC 677 “The Maintenance of Duplicate
Databases” (1975)

T\
“To the extent that the communication S
paths can be made reliable, and the
clocks used by the processes kept close
to synchrony, the probability of vl
seemingly strange behavior can be made (-~ 1 3 2% A
very small. However, the distributed /e 2 7¢ o/
nature of the system dictates that this
probability can never be zero.”
™
| X



|dea: Logical clocks

* Landmark 1978 paper by Leslie Lamport

* Insight: only the events themselves matter i =

ldea: Disregard the precise clock time

' Instead, capture just a “happens before”
i relationship between a pair of events

11



Defining “happens-before” (=)

* Consider three processes: P1, P2, and P3

* Notation: Event a happens before event b (a 2 b)

P1

P2

P3

Physical time |

12



Defining “happens-before” (=)

* Can observe event order at a single process

P1

P2

P3

Physical time |

13



Defining “happens-before” (=)

1.

If same process and a occurs before b, thena 2> b

P1

P2

P3

Physical time |

14



Defining “happens-before” (=)

1. If same process and a occurs before b, thena 2 b

2. Can observe ordering when processes communicate

P1

P2

P3

Physical time |

15



Defining “happens-before” (=)

1.

2.

If same process and a occurs before b, thena 2> b

If ¢ is a message receipt of b, thenb 2 ¢

P1

P2

P3

Physical time |

16



Defining “happens-before” (=)

1.

2.

3.

If same process and a occurs before b, thena—2> b
If cis a message receipt of b, then b 2 ¢

Can observe ordering transitively

P1

P2

P3

Physical time |

17



Defining “happens-before” (=)

1.

2.

3.

If same process and a occurs before b, thena—2> b

If cis a message receipt of b, then b 2 ¢

Ifa—=>bandb—>c thena—>c

P1

P2

P3

Physical time |

18



Concurrent events

* Not all events are related by 2

* a, d not related by = so concurrent, writtenasa || d

P1

P2

P3

Physical time |

19



Lamport clocks: Objective

* We seek a clock time C(a) for every event a

Plan: Tag events with clock times; use clock
times to make distributed system correct

* Clock condition: If a =2 b, then C(a) < C(b)



The Lamport Clock algorithm

* Each process P; maintains a local clock C;

1. Before executinganevent, C; < C+ 1

P1
C]_:O

d

b

P2
C2=0

P3
C3=O

Physical time |

21



The Lamport Clock algorithm

1. Before executing an eventa, C; < C; + 1:

* Set event time C(a) € C

P1
C]_:l

' 4

d

b

C(a)

)

P2
C2=0

Physical time |

22



The Lamport Clock algorithm

1. Before executing an eventb, C; < C + 1:

* Set event time C(b) € C,

P1
C1=2

P2
C2=0

Physical time |

23



The Lamport Clock algorithm

1. Before executinganeventb,C; < C+1

2. Send the local clock in the message m

P1
C1=2

P2
C2=0

P3
C3=O

Physical time |

24



The Lamport Clock algorithm

3.

On process P; receiving a message m:

P1
C1=2

P2
C2=3

P3
C3=O

* Set C; and receive event time C(c) <1 + max{ C; C(m) }

Physical time |

25



Lamport Timestamps: Ordering all events

* Break ties by appending the process number to each event:

1. Process P;timestamps event e with C(e).i

2. ((a).i< C(b).j when:
* C(a) <C(b), or C(a)=C(b)and i<}

* Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
* This is called a total ordering of events



Lamport Timestamps: Ordering all events

* Break ties by appending the process number to each event:

1. Process P;timestamps event e with C(e).i

2. ((a).i< C(b).j when:
* C(a) <C(b), or C(a)=C(b)and i<}

* Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
* This is called a total ordering of events



Order all these events (with total ordering)

P2

C2=O

P3
C3=0

Physical time |



Order all these events (with total ordering)

P2

C2=O C3=0

P3

d 3.2
f 4.3

7399

h 5.4

O | 6.4
Physical time |



Which events are concurrent with h?

P2
C2=O

7399

h 5.4

O | 6.4
Physical time |



How are ¢, d, e, f ordered (in the total order)?

P1
C1=O

1.1 a ¢
2.1b ¢©

3.1 c O

P2 P3
C,=0 C5=0
d 3.2
O f 4.3
Q0 e 4.2

7399

P4 Impose an order on
C,=0 concurrent events!

Isitd, f c, e?

Instead, ¢, d, e, f
h 5.4

O | 6.4
Physical time |



TotaHy—Ordered Multicast

* Client sends update to one replica site j
* Replica assigns it Lamport timestamp C;. j

* Key idea: Place events into a sorted local queue
* Sorted by increasing Lamport timestamps

Example: P1’s B, 11 1.2 < Timestamps

local queue:



TotaHy—Ordered Multicast

* Client sends update to one replica site j
* Replica assigns it Lamport timestamp C;. j

* Key idea: Place events into a sorted local queue
* Sorted by increasing Lamport timestamps

Example: P1’s B, 11 1.2 < Timestamps

local queue:



Totally-Ordered Multicast (Almost correct

1. On receiving an update from client, broadcast to others (including
yourself)

2. Onreceiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. Onreceiving an acknowledgement:
* Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

34



Totally-Ordered Multicast (Almost correct

1. On receiving an update from client, broadcast to others (including
yourself)

2. Onreceiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. Onreceiving an acknowledgement:
* Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

35



Totally-Ordered Multicast Amostcorrect)

 P1queuesS, P2 queues

* P1 queues and ack’s
* P1 marks " fully ack'ed

* P2 marks - fully ack’ed

B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-

(Ack’s to self not shown here)

36



Totally-Ordered Multicast (Correct version)

1. On receiving an update from client, broadcast to others (including
yourself)

( )

2. On receiving or processing an update:
a) Add it to your local queue, if received update

b) Broadcast an acknowledgement message to every replica (including yourself) only
from head of queue

. J

3. Onreceiving an acknowledgement:
* Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue




Totally-Ordered Multicast (Correct version)

(Ack’s to self not shown here)

38



So, are we done?

* Does totally-ordered multicast solve the problem of multi-site
replication in general?

* Not by a long shot!

1. Our protocol assumed:
* No node failures
* No message loss
* No message corruption

2. All to all communication does not scale

3. Waits forever for message delays (performance?)

39



Intro to Concurrency Conclusion

e Concurrency is great for performance, hard to reason about, and
often unavoidable in systems

* Replicated DB example

* Concurrent updates can lead to inconsistency between replicas
* Lamport clocks can order events in a distributed system
e Lamport clocks + careful protocol = correct replication

e What is “correct”?



