
Introduction to Concurrency
& Logical Time

COS 316: Principles of Computer System Design
Lecture 15

Amit Levy & Ravi Netravali

Concurrency

• Multiple things happening at the same time

• Primary benefit is better performance
• Do more work in the same amount of time
• Complete fixed amount work in less time
• Better utilize resources

• Primary cost is complexity
• Hard to reason about
• Hard to get right
• (Systems deal with it, not applications, … to some extent)

Concurrency Examples

Run a computation on
all cores in a machine

Run a computation on all
cores on 100K machines!

Concurrency Examples

Run a computation on
all cores in a machine

Run a computation on all
cores on 100K machines!

Application with multiple
outstanding writes to disk

Many applications
write to the disk

Distributed Systems

1) Multiple computers
2) Connected by a network
3) Doing something together

Concurrency is Inevitable!

• A New York-based bank wants to make its transaction ledger database resilient
to whole-site failures

• Replicate the database, keep one copy in sf, one in nyc

Motivation: Multi-site database replication

New York
San
Francisco

6

• Replicate the database, keep one copy in sf, one in nyc
• Client sends query to the nearest copy
• Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

7

• Replicate the database, keep one copy in sf, one in nyc
• Client sends query to the nearest copy
• Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed
in the same order at each copy

8

What to Do?

• Handle one client at a time?
• Deposit $100 in both replicas,

then pay 1% interest in both replicas
• Pay 1% interest in both replicas,

then deposit $100 in both replicas

• How to enforce a consistent order?
• Based on wall-clock time?

RFC 677 “The Maintenance of Duplicate
Databases” (1975)
“To the extent that the communication
paths can be made reliable, and the
clocks used by the processes kept close
to synchrony, the probability of
seemingly strange behavior can be made
very small. However, the distributed
nature of the system dictates that this
probability can never be zero.”

Idea: Logical clocks

• Landmark 1978 paper by Leslie Lamport

• Insight: only the events themselves matter

11

Idea: Disregard the precise clock time
Instead, capture just a “happens before”
relationship between a pair of events

• Consider three processes: P1, P2, and P3

• Notation: Event a happens before event b (a à b)

Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

12

• Can observe event order at a single process

Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

a

b

13

1. If same process and a occurs before b, then a à b

Defining “happens-before” (à)

Physical time ↓

P1 P2
P3

a

b

14

1. If same process and a occurs before b, then a à b

2. Can observe ordering when processes communicate

Defining “happens-before” (à)

P1 P2
P3

a

b
c

15

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

Defining “happens-before” (à)

P1 P2
P3

a

b
c

16

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. Can observe ordering transitively

Defining “happens-before” (à)

P1 P2
P3

a

b
c

17

Physical time ↓

1. If same process and a occurs before b, then a à b

2. If c is a message receipt of b, then b à c

3. If a à b and b à c, then a à c

Defining “happens-before” (à)

P1 P2
P3

a

b
c

18

Physical time ↓

• Not all events are related by à

• a, d not related by à so concurrent, written as a || d

Concurrent events

19

P1

a

b
c

P2
P3

Physical time ↓

d

• We seek a clock time C(a) for every event a

• Clock condition: If a à b, then C(a) < C(b)

Lamport clocks: Objective

20

Plan: Tag events with clock times; use clock
times to make distributed system correct

• Each process Pi maintains a local clock Ci

1. Before executing an event, Ci ß Ci + 1

The Lamport Clock algorithm

P1
C1=0

a

b
c

P2
C2=0 P3

C3=0

21

Physical time ↓

1. Before executing an event a, Ci ß Ci + 1:

• Set event time C(a) ß Ci

The Lamport Clock algorithm

P1
C1=1

a

b
c

P2
C2=0 P3

C3=0C(a) = 1

22

Physical time ↓

1. Before executing an event b, Ci ß Ci + 1:

• Set event time C(b) ß Ci

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=0 P3

C3=0

C(b) = 2

C(a) = 1

23

Physical time ↓

1. Before executing an event b, Ci ß Ci + 1

2. Send the local clock in the message m

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=0 P3

C3=0

C(b) = 2

C(a) = 1

C(m) = 2

24

Physical time ↓

3. On process Pj receiving a message m:

• Set Cj and receive event time C(c) ß1 + max{ Cj, C(m) }

The Lamport Clock algorithm

P1
C1=2

a

b
c

P2
C2=3 P3

C3=0

C(b) = 2

C(a) = 1

C(m) = 2

C(c) = 3

25

Physical time ↓

Lamport Timestamps: Ordering all events

• Break ties by appending the process number to each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
• This is called a total ordering of events

26

Lamport Timestamps: Ordering all events

• Break ties by appending the process number to each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
• This is called a total ordering of events

27

Order all these events (with total ordering)

P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C4=0

d

e

f

g

h

i

1.1

2.1 3.2

Order all these events (with total ordering)

P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C4=0

d

e

f

g

h

i

1.1

2.1 3.2
4.3

5.4

6.4

7.3

Which events are concurrent with h?

P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C4=0

d

e

f

g

h

i

1.1

2.1 3.2
4.3

5.4

6.4

7.3

How are c, d, e, f ordered (in the total order)?

P1
C1=0

a

b

c

P2
C2=0

P3
C3=0

Physical time ↓

P4
C4=0

d

e

f

g

h

i

1.1

2.1 3.2
4.3

5.4

6.4

7.3

3.1 4.2

Is it d, f, c, e?

Instead, c, d, e, f

Impose an order on
concurrent events!

• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
• Sorted by increasing Lamport timestamps

Totally-Ordered Multicast

P1

%
1.2

$
1.1Example: P1’s

local queue:

32

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps

• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
• Sorted by increasing Lamport timestamps

Totally-Ordered Multicast

P1

%
1.2

$
1.1Example: P1’s

local queue:

33

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps

1. On receiving an update from client, broadcast to others (including
yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Almost correct)

34

1. On receiving an update from client, broadcast to others (including
yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Almost correct)

35

• P1 queues $, P2 queues %

• P1 queues and ack’s %
• P1 marks % fully ack’ed

• P2 marks % fully ack’ed

Totally-Ordered Multicast (Almost correct)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

✔ ✔✔

(Ack’s to self not shown here)
36

✘ P2 processes %

1. On receiving an update from client, broadcast to others (including
yourself)

2. On receiving or processing an update:
a) Add it to your local queue, if received update
b) Broadcast an acknowledgement message to every replica (including yourself) only

from head of queue

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Correct version)

37

38

Totally-Ordered Multicast (Correct version)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$
%

%

$

✔✔ ✔

(Ack’s to self not shown here)

$
1.1

✔

• Does totally-ordered multicast solve the problem of multi-site
replication in general?

• Not by a long shot!

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All to all communication does not scale
3. Waits forever for message delays (performance?)

So, are we done?

39

Intro to Concurrency Conclusion

• Concurrency is great for performance, hard to reason about, and
often unavoidable in systems

• Replicated DB example
• Concurrent updates can lead to inconsistency between replicas
• Lamport clocks can order events in a distributed system
• Lamport clocks + careful protocol = correct replication

• What is “correct”?

