Logical Time 2

il vET | Nov (M
TES | TAM
B EN | TvMm |8

COS 316: Principles of Computer System Design
Lecture 16

Amit Levy & Ravi Netravali

Concurrency
* Multiple things happening at the same time

* Primary benefit is better performance
* Do more work in the same amount of time
 Complete fixed amount work in less time
* Better utilize resources

* Primary cost is complexity
e Hard to reason about

* Hard to get right
» (Systems deal with it, not applications, ... to some extent)

Distributed Systems, What?

1) Multiple computers
2) Connected by a network Concurrency is Inevitable!
3) Doing something together

Motivation: Multi-site database replication

* A New York-based bank wants to make its transaction ledger database resilient
to whole-site failures

* Replicate the database, keep one copy in sf, one in nyc

San
Francisco

The consequences of concurrent updates

* Replicate the database, keep one copy in sf, one in nyc
* Client sends query to the nearest copy
* Client sends update to both copies

— R S N R R R R N R RN R N R RN R R N RSN R R N R R R R R R

gggi Inconsistent replicas!
i Updates should have been performed in

$1 oi the same order at each copy

o
o
o

S N N N NN N S .
-

Lamport Timestamps: Ordering all events

* Break ties by appending the process number to each event:

1. Process P;timestamps event e with C(e).i

2. ((a).i< C(b).j when:
* C(a) <C(b), or C(a)=C(b)and i<}

* Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
* This is called a total ordering of events

TotaHy—Ordered Multicast

* Client sends update to one replica site j
* Replica assigns it Lamport timestamp C;. j

* Key idea: Place events into a sorted local queue
* Sorted by increasing Lamport timestamps

Example: P1’s B, 11 1.2 < Timestamps

local queue:

TotaHy—Ordered Multicast

* Client sends update to one replica site j
* Replica assigns it Lamport timestamp C;. j

* Key idea: Place events into a sorted local queue
* Sorted by increasing Lamport timestamps

Example: P1’s B, 11 1.2 < Timestamps

local queue:

Totally-Ordered Multicast (Almost correct

1. On receiving an update from client, broadcast to others (including
yourself)

2. Onreceiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. Onreceiving an acknowledgement:
* Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Almost correct

1. On receiving an update from client, broadcast to others (including
yourself)

2. Onreceiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. Onreceiving an acknowledgement:
* Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

10

Totally-Ordered Multicast Amostcorrect)

 P1queuesS, P2 queues

* P1 queues and ack’s
* P1 marks " fully ack'ed

* P2 marks - fully ack’ed

B
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

-

(Ack’s to self not shown here)

11

Totally-Ordered Multicast (Correct version)

1. On receiving an update from client, broadcast to others (including
yourself)

()

2. On receiving or processing an update:
a) Add it to your local queue, if received update

b) Broadcast an acknowledgement message to every replica (including yourself) only
from head of queue

. J

3. Onreceiving an acknowledgement:
* Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Correct version)

(Ack’s to self not shown here)

13

So, are we done?

* Does totally-ordered multicast solve the problem of multi-site
replication in general?

* Not by a long shot!

1. Our protocol assumed:
* No node failures
* No message loss
* No message corruption

2. All to all communication does not scale

3. Waits forever for message delays (performance?)

14

Lamport Clocks Review
Q:a—=2b => LC(a) < LC(b)
Q: LC(a)<LC(b) => b-/->a (a—=>boral|b)

Q:all|b => nothing

Lamport Clocks and causality

* Lamport clock timestamps do not capture causality

e Given two timestamps C(a) and C(z), want to know whether there’s a
chain of events linking them:

a2>2b2..2y2>z

Vector clock: Introduction

* One integer can’t precisely order events in more than one process

* S0, a is a vector of integers, one entry for each
process in the entire distributed system

* Label event e with VC(e) = [cq, G, ..., C]
e Each entry ¢, is a count of events in process k that causally precede e

Vector clock: Update rules

* Initially, all vectors are [0, O, ..., O]

* Two update rules:

1. For each local event on process i, increment local entry c,

2. If process j receives message with vector [d,, d, ..., d_]:
* Set each local entry ¢, = max{c,, d,}
* Increment local entry c;

Vector clock: Example
* All processes’ VCs start at [0, O, O]

* Applying local update rule

* Applying message rule

* Local vector clock piggybacks on
inter-process messages

P2

P3

e O[0,0,1]

d ¢
)%o [2,2,2]

v

Physical time {,

19

Comparing vector timestamps
* Rule for comparing vector timestamps:
*V(a) = V(b) when a, = b, for all k
*V(a) < V(b) when a, £ b, for all k and V(a) # V(b)

* Concurrency:
*a || bifa;<b;and a;>b;, somei,]

Vector clocks capture causality

* V(w) < V(z) then there is a chain of events linked by
Happens-Before (=) between a and z

* V(a) | | V(w) then there is no such chain of events between a and w

P1 P2 P3
[1,0,0] w
2.00] x 0 [0,1,0]
[2,1,0]
Y
z 012,2,0]

Two events a, z

Lamport clocks: C(a) < C(z)
Conclusion: z-/->a, i.e., eithera—> zora || z

Vector clocks: V(a) < V(z)
Conclusion:a 2 z

Vector clock timestamps precisely capture
happens before relation (potential causality)

otivation: Distributed discussion board

Primary key auto incrementing

Oliver Schwartz £ * 14 58
2 days ago in Assignments - A4 PIN STAR WATCH VIEWS

Could a TA please elaborate on what this means:

() \ Updat|ng tem |n FIFO CaChe Optionally, at most one of the fields of the provided "model’

// might be annotated with the tag “dorm:"primary_key""

Assignmen QONymous 10d 2 1 By annotateg ean one of the fields of the provided struct will be PrimaryKey ? If this is not the

Precée

Precepts Teagl® Tomesh 1 Answer
Yue Tan 1A

a day ago

(?) Office hours on Oct v

The annotation means using golang's field tag .

Anonymous 11d 1 Comment Edit Delete Endorse --*

{ 7 \ A3 H|t and MISS v 0 Oliver Schwartz a day ago

Thanks. Just a clarifying question: for a stri
associated with primary_key in the tag to be just so

ey annotation, should y
pty string?
Assignments - A3 Anonymous 12d 1 Reply Edit Delete -
Jeff Helt TA 11 hours ago
The README shows an example Post struct and corresponding database schema, igg
and its associated type.

Reply Edit Delete «++

Distributed discussion board

e Users join specific discussion groups
* Each user runs a process on a different machine
* Messages (posts or replies) sent to all users in group

* Goal: Ensure replies follow posts
* Non-goal: Sort posts and replies chronologically

* Q: Can Lamport Clocks help here?

Lamport Clock-based discussion board

Post
P1 Q
P2
P3 i - ;
'
i i Want: Defer showing Reply until Post arrives
Time 2

Proposal 1 : Defer showing message if C(message) > local clock + 17

25

Lamport Clock-based discussion board

Post
P1 Q
P2
P3 i - ;
'
i i Want: Defer showing Reply until Post arrives
Time 2

Proposal 1 : Defer showing message if C(message) > local clock + 17
No! Local clock can be advanced by independent messages

26

Lamport Clock-based discussion board

Post
7\

P1

P2

P3

\ J
Y

Want: Defer showing Reply until Post arrives
Time 2

Proposal 2: Use totally ordered multicast?

27

Lamport Clock-based discussion board

p1 A Post

P2

P3

i i \Want: Don’t defer!

Time 2
Proposal 2: Use totally ordered multicast?

Nol It’s quite slow & gap could be due to other independent posts

28

VVC application: Causally-ordered discussion board

VC, = (1,0,0) VC,=(1,1,0)
I:)0
Original a
post
I:>1
VC, = (1,1,0)

P, I I

I

i ai

VC2 = (0,0,0) VC2 =(1,0,0)
Physical time 2>

Proposal 3: Defer showing message if C(message) > local clock + 17?

29

VVC application: Causally-ordered discussion board

VC, = (1,0,0) VC, = (1,1,0)

Physical time 2>

User O posts, user 1 replies to O’s post; user 2 observes

30

Logical Time Day 2 Conclusion

* Lamport clocks agree with happens-before
* Easily extended to a total order

* Totally ordered multicast used lamport clocks!
e Lamport clocks + careful protocol = correct replication

 Vector clocks capture happens-before (causality)

e Causally ordered discussion board
» Totally ordered multicast correct ... but loses performance (concurrency)
» Vector clocks for precise causal ordering with more concurrency

