
Logical Time 2

COS 316: Principles of Computer System Design
Lecture 16

Amit Levy & Ravi Netravali

Concurrency

• Multiple things happening at the same time

• Primary benefit is better performance
• Do more work in the same amount of time
• Complete fixed amount work in less time
• Better utilize resources

• Primary cost is complexity
• Hard to reason about
• Hard to get right
• (Systems deal with it, not applications, … to some extent)

Distributed Systems, What?

1) Multiple computers
2) Connected by a network
3) Doing something together

Concurrency is Inevitable!

• A New York-based bank wants to make its transaction ledger database resilient
to whole-site failures

• Replicate the database, keep one copy in sf, one in nyc

Motivation: Multi-site database replication

New York
San
Francisco

4

• Replicate the database, keep one copy in sf, one in nyc
• Client sends query to the nearest copy
• Client sends update to both copies

The consequences of concurrent updates

“Deposit
$100”

“Pay 1%
interest”

$1,000
$1,000

$1,100

$1,111

$1,010

$1,110

Inconsistent replicas!
Updates should have been performed in
the same order at each copy

5

Lamport Timestamps: Ordering all events

• Break ties by appending the process number to each event:

1. Process Pi timestamps event e with Ci(e).i

2. C(a).i < C(b).j when:
• C(a) < C(b), or C(a) = C(b) and i < j

• Now, for any two events a and b, C(a) < C(b) or C(b) < C(a)
• This is called a total ordering of events

6

• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
• Sorted by increasing Lamport timestamps

Totally-Ordered Multicast

P1

%
1.2

$
1.1Example: P1’s

local queue:

7

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps

• Client sends update to one replica site j
• Replica assigns it Lamport timestamp Cj . j

• Key idea: Place events into a sorted local queue
• Sorted by increasing Lamport timestamps

Totally-Ordered Multicast

P1

%
1.2

$
1.1Example: P1’s

local queue:

8

Goal: All sites apply updates in (same) Lamport clock order

ß Timestamps

1. On receiving an update from client, broadcast to others (including
yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Almost correct)

9

1. On receiving an update from client, broadcast to others (including
yourself)

2. On receiving an update from replica:
a) Add it to your local queue
b) Broadcast an acknowledgement message to every replica (including yourself)

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Almost correct)

10

• P1 queues $, P2 queues %

• P1 queues and ack’s %
• P1 marks % fully ack’ed

• P2 marks % fully ack’ed

Totally-Ordered Multicast (Almost correct)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

$
1.1

%
1.2

%

✔ ✔✔

(Ack’s to self not shown here)
11

✘ P2 processes %

1. On receiving an update from client, broadcast to others (including
yourself)

2. On receiving or processing an update:
a) Add it to your local queue, if received update
b) Broadcast an acknowledgement message to every replica (including yourself) only

from head of queue

3. On receiving an acknowledgement:
• Mark corresponding update acknowledged in your queue

4. Remove and process updates everyone has ack’ed from head of queue

Totally-Ordered Multicast (Correct version)

12

13

Totally-Ordered Multicast (Correct version)

P1 P2
$ 1.1

%
1.2

$
1.1

%
1.2

%ack

ack $

%
1.2

$
%

%

$

✔✔ ✔

(Ack’s to self not shown here)

$
1.1

✔

• Does totally-ordered multicast solve the problem of multi-site
replication in general?

• Not by a long shot!

1. Our protocol assumed:
• No node failures
• No message loss
• No message corruption

2. All to all communication does not scale
3. Waits forever for message delays (performance?)

So, are we done?

14

Lamport Clocks Review

Q: a à b =>

Q: LC(a) < LC(b) =>

Q: a || b =>

 LC(a) < LC(b)

 b -/-> a (a à b or a || b)

 nothing

• Lamport clock timestamps do not capture causality

• Given two timestamps C(a) and C(z), want to know whether there’s a
chain of events linking them:

a à b à ... à y à z

16

Lamport Clocks and causality

• One integer can’t precisely order events in more than one process

• So, a Vector Clock (VC) is a vector of integers, one entry for each
process in the entire distributed system

• Label event e with VC(e) = [c1, c2 …, cn]
• Each entry ck is a count of events in process k that causally precede e

17

Vector clock: Introduction

• Initially, all vectors are [0, 0, …, 0]

• Two update rules:

1. For each local event on process i, increment local entry ci

2. If process j receives message with vector [d1, d2, …, dn]:
• Set each local entry ck = max{ck, dk}
• Increment local entry cj

18

Vector clock: Update rules

• All processes’ VCs start at [0, 0, 0]

• Applying local update rule

• Applying message rule
• Local vector clock piggybacks on

inter-process messages

19

Vector clock: Example

P1

a

b

c

P2 P3

Physical time ↓

d

e

f

[2,0,0]

[1,0,0]
[2,0,0]

[2,1,0]

[2,2,0]

[2,2,2]

[0,0,1]

[2,2,0]

• Rule for comparing vector timestamps:
• V(a) = V(b) when ak = bk for all k
• V(a) < V(b) when ak ≤ bk for all k and V(a) ≠ V(b)

• Concurrency:
• a || b if ai < bi and aj > bj, some i, j

20

Comparing vector timestamps

• V(w) < V(z) then there is a chain of events linked by
 Happens-Before (à) between a and z

• V(a) || V(w) then there is no such chain of events between a and w

21

Vector clocks capture causality

x

y

[1,0,0]

[2,0,0]

[2,1,0]

[2,2,0]

w

z

P1 P2 P3

[0,1,0]a

Two events a, z

Lamport clocks: C(a) < C(z)
 Conclusion: z -/-> a, i.e., either a à z or a || z

Vector clocks: V(a) < V(z)
 Conclusion: a à z

22

Vector clock timestamps precisely capture
happens-before relation (potential causality)

Motivation: Distributed discussion board

O
K

O
K

O
K

Happens-

Before

HB

HB

Distributed discussion board

• Users join specific discussion groups
• Each user runs a process on a different machine
• Messages (posts or replies) sent to all users in group

• Goal: Ensure replies follow posts
• Non-goal: Sort posts and replies chronologically

• Q: Can Lamport Clocks help here?

25

Lamport Clock-based discussion board

P1

P2

P3

Time à

C2 = 2

1

1

C3 = 0

Reply

Post

Want: Defer showing Reply until Post arrives

3

3

Proposal 1 : Defer showing message if C(message) > local clock + 1?

26

Lamport Clock-based discussion board

P1

P2

P3

Time à

C2 = 2

1

1

C3 = 0

Reply

Post

Want: Defer showing Reply until Post arrives

3

3

4 5 6

Proposal 1 : Defer showing message if C(message) > local clock + 1?
No! Local clock can be advanced by independent messages

27

Lamport Clock-based discussion board

P1

P2

P3

Time à

C2 = 2

1

1

C3 = 0

Reply

Post

Want: Defer showing Reply until Post arrives

3

3

Proposal 2: Use totally ordered multicast?

28

Lamport Clock-based discussion board

P1

P2

P3

Time à

C2 = 2

1

C3 = 0

Post

1

Post

Want: Don’t defer!

3

3

No! It’s quite slow & gap could be due to other independent posts

Proposal 2: Use totally ordered multicast?

Proposal 3: Defer showing message if C(message) > local clock + 1?
 29

VC application: Causally-ordered discussion board

P0

P1

P2

 VC = (0,0,0)2 VC = (1,0,0)2

VC = (1,1,0)1

VC = (1,0,0)0 VC = (1,1,0)0

VC = (1,1,0)2

m

m*

Physical time à

Original
post

1’s reply

User 0 posts, user 1 replies to 0’s post; user 2 observes
30

VC application: Causally-ordered discussion board

P0

P1

P2

 VC = (0,0,0)2 VC = (1,0,0)2

VC = (1,1,0)1

VC = (1,0,0)0 VC = (1,1,0)0

VC = (1,1,0)2

m

m*

Physical time à

Original
post

1’s reply

Logical Time Day 2 Conclusion

• Lamport clocks agree with happens-before
• Easily extended to a total order

• Totally ordered multicast used lamport clocks!
• Lamport clocks + careful protocol = correct replication

• Vector clocks capture happens-before (causality)

• Causally ordered discussion board
• Totally ordered multicast correct … but loses performance (concurrency)
• Vector clocks for precise causal ordering with more concurrency

