
Securing Access to Resources
COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

Why might we want to control access
to resources?

Why might we not want to control
access to resources?

Designing secure
systems is a subtle craft
that must be informed
by real-world, human,
considerations.

A (slightly) formal model
● Objects: the things being accessed

○ A file, database table, network socket, satellite imagery of “nuclear facilities,” missile launcher...

● Subjects: an entity that requests access to an object
○ A process, network endpoint, etc…
○ Principal: some unique a account or role, such as a user

● Authentication: a proof that a subject speaks for some principal
○ E.g. logging in with a username & password

● Authorization: the particular rules that govern subjectsʼ access to objects
● Secrecy: who might learn the contents of an object
● Integrity: who may have influenced the contents of an object

Ad-hoc access control
● Access policy enforcement is scattered throughout system

● Very common in applications with lots of users. Why?

fn (profile *Profile) viewProfile(user) (HTML) {
 if profile.public ||
 profile.friends.contains(user) {
 return profile.HTML
 } else {
 return HTML.Forbidden
 }
}

fn (profile *Profile) viewFullName(user) (HTML) {
 if profile.public || user.handle ==
 “NSA_Backdoor” {
 return profile.FullName.HTML
 } else {
 return HTML.Forbidden
 }
}

Ad-hoc access control

Profile Table

id full_name profile_pic handle bio

1 Amit Levy /i/1f3.png alevy
Motivational
speaker,
futurist...

2 Wyatt
Lloyd /i/a60.png wlloyd

Enjoys long
function
names...

Friends Table

follower followee

1 2

2 1

1 4

1 5

... ...

● Application-specific access rules
● Data for rules stored separately from data objects

○ Really a problem of granularity

Problems Ad-hoc access control
● Policy is emergent

● Who can view a userʼs full name?

fn (profile *Profile) viewProfile(user) (HTML) {
 if profile.public ||
 profile.friends.contains(user) {
 return profile.HTML
 } else {
 return HTML.Forbidden
 }
}

fn (profile *Profile) viewFullName(user) (HTML) {
 if profile.public || user.handle ==
 “NSA_Backdoor” {
 return profile.FullName.HTML
 } else {
 return HTML.Forbidden
 }
}

The Guard Model

Guard

Object

Object

Object

Object

Request

Is subject allowed to
access resources?

Subject

Examples of the Guard Model
● Kernel

○ File system permissions: as long as objects modeled as files, access checks are centralized
○ Reference monitor

● Networks
○ Firewall
○ Apache HTTP Serverʼs .htaccess rules

● Databases
○ Table/database visibility
○ Limit ability to ALTER, UPDATE, DROP, etc

The Guard Model
A mechanism, leaves us with many questions:

● How do we ensure applications only interact via the guard?
● What kinds of rules does the guard enforce?
● Who gets to set or change the rules?
● What is the granularity of subjects and objects?
● Who gets to create new principals?

Answers to these questions help determine the expressivity, performance, and security
of the system.

Enforcing the guard through isolation
Key idea, either:

● Donʼt “connect” resources directly to applications, only to guard
● Ensure (somehow) resources access embed guard rules
● Some combination

There are three basic kinds of isolation:

● Hardware enforced: memory protection, or just stick the guard & resources on
different machines

● Language-based isolation: use restrictive language to express applications
○ SQL, IP packets, type-safe languages

● Static validation: symbolic execution, software fault isolation

What kinds of rules?
There are many “policy languages”

● Access control lists: which subjects can read/write which objects
● Capabilities: unforgeable tokens that encode specific rules on objects

○ Subjects unnamed

● Information flow: the relationship between data sources and data sinks
○ Neither subjects nor objects named, instead

Who sets the rules?
We will discuss two broad categories:

● Discretionary Access Control (DAC)
○ Very common, e.g. UNIX user/group permissions

● Mandatory Access Control (MAC)
○ Pretty uncommon, much more robust
○ E.g. SE-Linux & AppArmore, and lots of research systems

Granularity
Why doesnʼt database just re-use UNIX file permissions?

● The objects in UNIX file permissions are files, with read/write/execute permissions
● But...
● Tables & schemas might span many files
● Databases might include several schemas or tables in a single file
● Alter, update, drop donʼt map well to read/write/execute

○ E.g. UPDATE should retain layout of data in a file

Granularity
Why doesnʼt web application re-use database permissions

Profile Table

id full_name profile_pic handle bio

1 Amit Levy /i/1f3.png aalevy Dog dad, foodie,
yog...

2 Alan
Kaplan /i/a60.png kap

Enjoys long
function
names...

Friends Table

follower followee

1 2

2 1

1 4

1 5

... ...

Centralized vs. Decentralized Access Control
Why donʼt web applications re-use UNIX users/groups?

● Facebook does not have a UNIX user for you on their servers. Why?
● UNIX does not allow unprivileged users to create new principals
● Web applications run as a single UNIX user, and re-implement:

○ Authentication
○ Authorization
○ Guard
○ ...

Consider a GitHub-like Ecosystem

Continuous
Integration

Git
pages

PR bot

Git repositories + code, user
profiles, organizations

Guard

Autograder

WWW

● Central code DB
● Apps access DB resources to provide extra

services
● Application access must be restricted:

○ E.g. donʼt make private repos public

Access Control Lists (ACLs)

Let’s Start with User Permissions
Associate a list of (user, permissions) with each resource

[(aalevy, [PUSH,PULL]), (kap, [PUSH,PULL]), (will, [PULL])]

cos316/assignment4-alevy.git

[(alevy, [PUSH,PULL]), (wlloyd, [PUSH,PULL]), (will, [PULL])]

Repositories

Implementing ACLs: Inline with Object

Repository Table

id name language acl

1 cos316/assignment4-aalevy Golang “[(alevy, [PUSH,PULL]), (wlloyd, [PUSH,PULL]), ...]”

2 tock/tock Rust ...

...

Implementing ACLs: Normalize

Repository Table

id name language

1 cos316/assignment4-aalevy Golang

2 tock/tock Rust

...

ACL Table

repo_id user permission

1 aalevy push

1 kap push

1 kap pull

1 aalevy pull

1 will pull

2 aalevy push

...

select (acls.user, acls.permission)
 from repositories, acls where
 repositories.name = ‘cos316/assignment4-aalevy’
 and acls.repo_id = repositories.id;

ACLs in Action

Guard cos316/assignment4-aalevy
Push(cos316/assignment4-aalevy)

select count(*) > 0
 from repositories, acls where
 repositories.name = ‘cos316/assignment4-aalevy’
 and acls.repo_id = repositories.id
 and acls.user = ‘aalevy’
 and acls.permission = ‘push’;

alevy

False
?

Error!

Extending ACLs to Apps: a-la UNIX
● Applications act on behalf of users
● When an application makes a request, it uses a particular userʼs credentials

○ Either one user per application
○ Or different users for different requests

● Works great for:
○ Alternative UIs, e.g. the `git` client vs. the GitHub Web UI both act on behalf of users

● Why might this be suboptimal?

Extending ACLs to Apps: Special Principles
● Create a unique principles for each app

○ E.g., the “autograder” principle
○ Acts just like a regular user

● When applications make request, they use their own, unique, credentials
● Add application principals to resource ACLs as desired
● Works when

○ Applications need to operate with more than one userʼs access
■ E.g. the autograder needs to access private repositories owned by different students

○ and less than any one userʼs access
■ E.g. the autograder shouldnʼt be able to access non COS316 repositories

Access Control Lists
Advantages

● Simple to implement
● Simple to administer
● Easy to revoke access

Drawbacks

● Tradeoff granularity for simplicity
○ More granular permissions require more

complex rules in the guard
● Doesnʼt scale well

○ E.g. need up to Users X Repos X Access Right
entries in ACL table

● Centralized access control
○ Needs serverʼs cooperation to delegate access

Summary
● Access control is a reflection of some real-world policy

○ Design with care

● Ad-hoc access control is very common, but problematic, so prefer systems
● The guard model helps separate security enforcement from other functionality
● Behavior of a security system is determined by:

○ Isolation mechanism
○ Policy rules
○ Granularity of subjects/objects
○ Mandatory vs. Discretionary
○ Centralized vs. Decentralized Principals

● Access Control Lists:
○ Common, but extremely limited
○ Third lecture will explore more obscure but richer mechanisms

