
Access Control
COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

Last Time - The Guard Model

Guard

Object

Object

Object

Object

Request

Is subject allowed to
access resources?

Subject

Consider a GitHub-like Ecosystem

Continuous
Integration

Git
pages

PR bot

Git repositories + code, user
profiles, organizations

Guard

Autograder

WWW

● Central code DB
● Apps access DB resources to provide extra

services
● Application access must be restricted:

○ E.g. donʼt make private repos public

Discretionary Access Control
Discretionary Access Control - [Access] controls are discretionary in the sense that a subject with a
certain access permission is capable of passing that permission (perhaps indirectly) on to any other
subject (unless restrained by mandatory access control).

- Trusted Computer System Evaluation Criteria, 1985 (the “Orange Book”)

● Access Control Lists
○ Restrict access to objects based on the identity of subjects
○ Subjects can pass object contents after reading it

● Capabilities
○ Restrict access to objects based on possession of a capability

Let’s Start with User Permissions
Associate a list of (user, permissions) with each resource

[(aalevy, [PUSH,PULL]), (kap, [PUSH,PULL]), (will, [PULL])]

cos316/assignment4-alevy.git

[(alevy, [PUSH,PULL]), (wlloyd, [PUSH,PULL]), (will, [PULL])]

Repositories

Implementing ACLs: Inline with Object

Repository Table

id name language acl

1 cos316/assignment4-aalevy Golang “[(alevy, [PUSH,PULL]), (wlloyd, [PUSH,PULL]), ...]”

2 tock/tock Rust ...

...

Implementing ACLs: Normalize

Repository Table

id name language

1 cos316/assignment4-aalevy Golang

2 tock/tock Rust

...

ACL Table

repo_id user permission

1 aalevy push

1 kap push

1 kap pull

1 aalevy pull

1 will pull

2 aalevy push

...

select (acls.user, acls.permission)
 from repositories, acls where
 repositories.name = ‘cos316/assignment4-aalevy’
 and acls.repo_id = repositories.id;

ACLs in Action

Guard cos316/assignment4-aalevy
Push(cos316/assignment4-aalevy)

select count(*) > 0
 from repositories, acls where
 repositories.name = ‘cos316/assignment4-aalevy’
 and acls.repo_id = repositories.id
 and acls.user = ‘aalevy’
 and acls.permission = ‘push’;

alevy

False?

Error!

Extending ACLs to Apps: a-la UNIX
● Applications act on behalf of users
● When an application makes a request, it uses a particular userʼs credentials

○ Either one user per application
○ Or different users for different requests

● Works great for:
○ Alternative UIs, e.g. the `git` client vs. the GitHub Web UI both act on behalf of users

● Why might this be suboptimal?

Extending ACLs to Apps: Special Principles
● Create a unique principles for each app

○ E.g., the “autograder” principle
○ Acts just like a regular user

● When applications make request, they use their own, unique, credentials
● Add application principals to resource ACLs as desired
● Works when

○ Applications need to operate with more than one userʼs access
■ E.g. the autograder needs to access private repositories owned by different students

○ and less than any one userʼs access
■ E.g. the autograder shouldnʼt be able to access non COS316 repositories

Access Control Lists
Advantages

● Simple to implement
● Simple to administer
● Easy to revoke access

Drawbacks

● Tradeoff granularity for simplicity
○ More granular permissions require more

complex rules in the guard
● Doesnʼt scale well

○ E.g. need up to Users X Repos X Access Right
entries in ACL table

● Centralized access control
○ Needs serverʼs cooperation to delegate access

An Alternative - Capabilities
“[A] token, ticket, or key that gives the possessor permission to access an entity or
object in a computer system.” - Capability-Based Computer Systems

● Self-describing
○ Contains both object name and permitted operations

● Globally meaningful
○ Object and operation names are not subject-specific

● Transferrable
○ A subject can pass a capability to another (e.g. a sub-process, via IPC, a third-party app, etc)
○ Ideally can delegate subset of capabilities

● Unforgeable
○ Subjects cannot create capabilities with arbitrary permissions

File Descriptors as Proto-Capabilities
● Unforgeable ✓

○ Process-level fd is just an index in a kernel
structure

● Self-describing ✓
○ Kernel fd contains reference to inode +

permissions
● Globally meaningful ✗

○ Fds are process-specific
● Transferrable ✓/✗

○ Via IPC sendmsg/recvmsg

Inode

5

rwrw rw rw rw rw

Process
Kernel

FD table

FD

rw

Consider a GitHub-like Ecosystem

Continuous
Integration

Git
pages

PR bot

Git repositories + code, user
profiles, organizations

Guard

Autograder

WWW

● Central code DB
● Apps access DB resources to provide extra

services
● Application access must be restricted:

○ E.g. donʼt make private repos public

User Permissions using Capabilities
Hand out communicable, unforgeable tokens encoding:

● Object
● Access right

Users store capabilities, not the database

E.g.

“push(cos316/assignment4-aalevy)”

“pull(cos316/assignment4-aalevy)”

Implementing Capabilities with HMAC
HMAC - a keyed-hash function: hmac(secret_key, data) hash of data

fn gen_capability(op, repo) {
 hmac(db_secret, fmt.Sprintf(“%s(%s)”, op, repo))
}

fn verify_capability(cap, op, repo) {
 cap == hmac(db_secret, fmt.Sprintf(“%s(%s)”, op, repo))
}

Capabilities in Action

Guard cos316/assignment4-aalevy

Push(cos316/assignment4-aalevy,
Cap)

verify_capability(Cap, “push”,
 “cos316/assignment4-aalevy”)

Doesnʼt matter
who

False?

Error!

Extending Capabilities to Applications
● Users can simply give applications a subset of their capabilities

Autograder

aalevy

Push to
cos316/ass
ignment4-.
.

Push to
cos316/ass
ignment4-.
.

Push to
cos316/assi
gnment4-..

Extending Capabilities to Applications

Guard cos316/assignment4-aalevy

Push(cos316/assignment4-aalevy,
Cap)

verify_capability(Cap, “push”,
 “cos316/assignment4-aalevy”)

False?

Error!

Autograder

Capabilities
Advantages

● Decentralized access control
○ Anyone can “pass” anyone a capability

● Scales well
● Granular permissions are simple to check

Drawbacks

● How do you revoke a capability?
● Moves complexity to users/clients

○ Users have to manage their capabilities now

Capabilities In The Wild
● Operating Systems

○ History of industry and research operating systems
○ seL4
○ FreeBSDʼs Capsicum
○ Fuschia OS

● Web
○ S3 Signed URLs

■ URL to private resources, contain signature, expiration, permitted HTTP methods, etc
○ CDN-hosted images/videos (FB, Instagram, YouTube)

■ Browsing via Web page/app is protected by login+cookie, but media typically fetched
unauthenticated

We Still Have a Problem
The autograder is allowed to:

● read all cos316/ repositories
● comment on all cos316/ repositories

Can code from a private repository end up in a comment on a public repository?

Who enforces policy under DAC?

Guard

App

WWW

Repo 1 Repo 2

FBI

SNCC

Legend

What might go wrong?App

Who enforces policy under DAC?

Guard

App

Only repository collaborators can
read code from private
repositories.

Read repo 1 codeWrite comment
to repo 2

Only repository collaborators can
comment on repositories.Repo 1 Repo 2

FBI

SNCC

Legend

Which components enforce policy?

Who enforces policy under DAC?

Guard

App

WWW

Only repository collaborators can
read code from private
repositories.

Read repo 1 codeWrite comment
to repo 2

Only repository collaborators can
comment on repositories.Repo 1 Repo 2

Trusted Computing Base

Legend

Limitations of Discretionary Access Control
● Discretionary means a subject with access to an object can propagate information:

○ In UNIX, owners determine read/write/execute access for themselves, group, and “other”
○ Subject can pass capabilities to anyone
○ UNIX process reads ~/.ssh/ida_rsa and writes output to public log
○ Canʼt (trivially) revoke capabilities

● This is one reason itʼs sufficient to compromise a single high privilege application,
rather than whole system, in order to extract private data

The non-interference property
Informally:

A program is non-interferent if itʼs transformations of data in low security domains (low)
are not influenced by data in higher security domains (high)

The non-interference property
M, a memory state including low and high memory, MH and ML, respectively

P: (M) → M*, a program execution over a memory state resulting in a new memory state,
is non-interferent if:

∀M1,M2 s.t. M1L = M2L
 ∧ P(M1) → M1*

 ∧ P(M2) → M2*

 ⇒ M1*L = M2*L

Enforcing Non-Interference with DAC
Discretionary Access Control policies can enforce non-interference by completely
partitioning the system

Repo 1

App

Repo 2

App

Guard

Enforcing Non-Interference with DAC
Discretionary Access Control policies can enforce non-interference by completely
partitioning the system, or with careful, static sharing

Repo 1

App

Repo 2

App

Guard

Read-o
nly

WWW

Mandatory Access Control (MAC)
● Goal: data secrecy & integrity donʼt rely on trusting applications at all
● All resource accesses governed by a global policy
● Subjects cannot change global policy
● Typically policy articulated in terms of data sources and sinks
● E.g.

○ label data with itʼs sensitivity
○ define permitted flows between labels
○ Permit operations as long as information flow rules are not violated

A simple security label lattice

Public

Repo 1 Repo 2
Flow not permitted!

Flow not p
erm

itte
d!Flow not permitted!

Implementing MAC
There are very few MAC systems used in practice:

● SELinux - an extension to Linux originating from the NSA
○ Used in Android

● Mandatory Integrity Control - a Windows kernel subsystem limited to integrity
● TrustedBSD (in development)
● …

But lots of research systems

Implementing MAC
One general approach:

● Assign a security label to object (file, network endpoint, console, etc)
● Assign a floating label to subjects (running processes)

○ “Floating” because it changes dynamically

● Whenever moving/copying data, check that source label can flow to sink label
● Allow subject to “raise” its floating label, but not to “lower” it

Guard
Read

App
Repo 1 Repo 2

WWW

Write

Permissible, because write
couldnʼt involve secret data

Public

Repo 2

Repo 1

Guard

Read

App
Repo 1 Repo 2

WWW

Write

Permissible, because write
couldnʼt only involve data secret
to Repo 2

Public

Repo 2

Repo 1

Guard

Read

App
Repo 1 Repo 2

WWW
Write

Prohibited, because write to
Repo 1 could involve data secret
to Repo 2

X
Public

Repo 2

Repo 1

Guard

Read

App
Repo 1 Repo 2

WWW
Write

Prohibited, because write could
involve data secret from Repo 2
or Repo 1

X
Read

WriteX

Public

Repo 2

Repo 1

Mandatory Access Control in Practice
● Dates back to at least 1983

○ Defined in the DoDs Trusted Computer System Evaluation Criteria (aka the Orange Book)

● Very powerful guarantee!
○ Security policies on data do not rely on application correctness

● Why is it not more prevalent?

Why isn’t MAC more prevalent?
● Complexity: implementing MAC can be hard to get right

● Performance: lattice checks can be slow

● Flexibility: by design, applications cannot get around security policy

● Simplicity: MAC is harder to administer

