Network Access Control

COS 316: Principles of Computer System Design Lecture 21

Amit Levy & Ravi Netravali

Controlling Which Packets Get Delivered

- Objects: the things being accessed
 - Services (possibly) running at the destination host machine
 - Identified by fields in the packet headers
 - E.g., destination IP address and TCP port number address
- Subjects: entity requesting access to an object

• Authorization: rules governing subject's access to objects

Controlling Which Packets Get Delivered

- Objects: the things being accessed
 - Services (possibly) running at the destination host machine
 - Identified by fields in the packet headers
 - E.g., destination IP address and TCP port number address
- Subjects: entity requesting access to an object
 - Sender of the packet on the source host machine
 - Identified by fields in the packet headers
 - E.g., source IP address, source TCP port number, ...
- Authorization: rules governing subject's access to objects

The Guard Model

Network Administrator Sets the Policy

Policy Language: Access Control Rule

- An access control rule has two parts
 - Match: pattern on packet header fields and location
 - Action: permit (forward) or deny (drop)
- Block external initiation of a TCP connection
 - Match: external link, TCP protocol, TCP SYN flag
 - Action: deny

SYN

Policy Language: Access Control Rule

- An access control rule has two parts
 - Match: pattern on packet header fields and location
 - Action: permit (forward) or deny (drop)
- Block external initiation of a TCP connection
 - Match: external link, TCP protocol, TCP SYN flag
 - Action: deny
- Allow traffic from Princeton clients
 - Match: internal link, source IP in 128.112.*.*
 - Action: permit

SYN

Policy Language: Access Control Lists

- Access control list (ACL)
 - List of rules, possibly overlapping
 - Ordered list to disambiguate overlaps

Priority	Match	Action
1	Src=1.2.3.4, Dest=5.6.7.8	Deny
2	Dest=1.2.3.8, Dport=53	Allow
3	Dest=1.2.3.*	Deny
4	Src=1.2.3.7, Dport=100	Allow
5	Dport=100	Deny

• Example:

Geometric Interpretation of Access Control List

- Overlapping shapes
 - Rules are multi-dimensional rectangles
 - Higher-priority rules on top of lower-priority
- Example with 4-bit addresses

Pri	Match	Action	Src
1	Src=1***, Dest=1***	Permit	
2	Src=****, Dest=10**	Deny	4

15

Applying an Access Control List

- Classifying a packet
 - Packet header: Src=1000, Dest=1011
 - Find the highest-priority matching rule
- Apply the associated action

Pri	Match	Action
1	Src=1***, Dest=1***	Permit
2	Src=****, Dest=10**	Deny

Simple Packet Classification Algorithm

- Classification problem
 - Given a packet (e.g., Src=1000, Dest=1011)
 - ... and an Access Control List
 - Find the highest-priority matching rule
- Simple algorithm
 - Scan the rules in priority order
 - Stop after the first match
- Does not scale!

Pri	Match	Action
1	Src=1***, Dest=1***	Permit
2	Src=****, Dest=10**	Deny
3	Src=****, Dest=****	Permit

Special Case: One-Dimensional Prefix Matching

Pri	Match	Action
1	Dest=110*	Deny
2	Dest=0100	Permit
3	Dest=1***	Permit
4	Dest=***	Deny

Longest-prefix match

Special Case: One-Dimensional Prefix Matching

Pri	Match	Action
1	Dest=110*	Deny
2	Dest=0100	Permit
3	Dest=1***	Permit
4	Dest=***	Deny

Longest-prefix match

Dest

			_	00	01	10	11
Pri	Match	Action	00				
1	Src=01, Dest=**	Deny					
2	Src=**, Dest=01	Deny	Src ⁰¹				
3	Src=11, Dest=11	Deny	10				
4	Src=**, Dest=**	Permit					
			11				

Dest

			_	00	01	10	11
Pri	Match	Action	00				
1	Src=01, Dest=**	Deny					
2	Src=**, Dest=01	Deny	Src ⁰¹				
3	Src=11, Dest=11	Deny	10				
4	Src=**, Dest=**	Permit					
			11				

- Build a compact classifier
 - By finding small "cuts"

(two-bit Src, two-bit Dest)

- Classify a packet
 - By traversing the trie

Packet with (10, 01)

Packet Classification: CAM Hardware

- Random Access Memory
 - Given a memory address
 - ... return the data word stored at that address
- Content-Addressable Memory
 - Given some key
 - ... find the data word (if any) associated with the key

1010	b
0110	а
1110	C
0001	С

Packet Classification: Ternary CAM Hardware

- Ternary Content-Addressable Memory (TCAM)
 - Ternary: 0, 1, or * (wildcard)
 - Matching pattern can have wildcards
 - Entries in the TCAM in priority order

Packet Classification: Ternary CAM Hardware

- Ternary Content-Addressable Memory (TCAM)
 - Ternary: 0, 1, or * (wildcard)
 - Matching pattern can have wildcards
 - Entries in the TCAM in priority order

Packet Classification in Practice

- Software access control
 - End-host network stack and software switches
 - Using algorithms for multi-dimensional packet classification
 - With optional caching of "popular" classification results
- Hardware access control
 - High-speed switches and network interface cards
 - Using Ternary Content Addressable Memory (TCAM)
 - With small TCAMs to reduce chip area and power consumption

Dynamic Access Control

- So far, we have discussed static ACLs
 - Configured by a network administrator
 - Based on network administrator knowledge of (in)valid traffic
- More sophisticated policies are dynamic
 - Adapted to the ongoing traffic (e.g., stateful firewall, SYN cookies)
 - Adapted to the routing protocol (e.g., reverse path forwarding)

Internet Clients and Servers

- Request-response protocols
 - Client initiates communication by sending a *request* message
 - Server accepts the request and sends a *response* message

Stateful Firewall: Protecting Clients

- Most user devices act as a client
 - Sending DNS requests to look up domain names
 - Sending TCP SYN packets to start TCP connections
 - Sending HTTP requests to retrieve Web pages
- They should not receive unsolicited traffic
 - They should only receive response traffic
 - ... from requests they sent recently
- Stateful firewall
 - Remember recent client request traffic
 - ... and permit (only) the associated response traffic

Stateful Firewall: Example

- By default, firewall denies all traffic destined to IP address 1.2.3.4
- Then, the client sends a packet to open a TCP connection to 5.6.7.8
- The firewall, on seeing the packet, adds a new "permit" rule
- ... allowing the return traffic from server 5.6.7.8 to client 1.2.3.4
- (Removing the rule when the connection ends or after a timeout)

SYN Cookies: Protecting Servers

- Denial-of-service attacks on servers
 - Malicious clients overloading the server
 - ... degrading performance of legit clients
- Challenging to prevent
 - Servers are *supposed* to receive traffic!
- Adversary's goal
 - Overwhelm the server
 - ... without investing much effort
 - Idea: asymmetric attack!

SYN Cookies: SYN Flooding Attacks

- TCP handshake to start a connection
 - Client sends a small SYN packet
 - Server allocates resources and sends a SYN-ACK
 - Client (supposedly) continues the communication

SYN Cookies: SYN Flooding Attacks

- Asymmetric attack
 - Client sends a 40-byte SYN packet
 - Server does a lot of work
- Crafty adversary
 - Send from a spoofed source IP address (hard to trace!)
 - Send from compromised hosts (very little overhead for adversary!)

SYN Cookies: Push the Work to the Client

- Server ensures the client has some "skin in the game"
 - Server puts a cryptographic "SYN cookie" in the SYN-ACK
 - Client must return the cookie in its ACK packets
 - Server verifies the cookie before dedicating resources
- Deny any ACK packets that fail the cookie check

Denial-of-Service Attacks are Common

sle	NBC News				
Ha	ackers arour	nd the world de	🗭 Tec	hRepublic	
sir	nple, effecti	ve cyberattack	Nokia	Botnet DDoS attacks are on the rise	nne
Dis	tributed Denia	🔀 Kotaku	A study	a from Nokia outlining the growing number of botnet attacks shows a	
effe	ective for peop	Among Us Se	larger a	amount of sophistication by hackers. DDos attacks	
3 w	eeks ago	To DDoS Atta	2 weeks	ago	
	s Infosecurit	Attacks started or	March	24 and since then the popular indie game has	
	Finland G	suffered online co	nnectivit	ty issues.	
	The websites	2 weeks ago			
	following DDo	S attacks. The min	istries ea	ach confirmed the	
	2 days ago			tr TechRadar	
				Israeli government confirms it was hit by huge DDoS attack	
				A number of Israeli government agencies were hit by a major Distributed Denial of Service (DDoS) attack earlier this week,	4000
				4 weeks ago	Accession in the local data in the

Wider Range of Detection Techniques

- Traffic measurement
 - Identify anomalous traffic destined to the server
 - Identify command-and-control for botnets
- Known suspicious IP addresses or entire networks
- Known suspicious other header fields (ports, Time-to-Live)
- Tracing attack traffic across the Internet back to the origin
- Comparing analysis across different victims
- Enforcement all comes down to access control!

https://www.youtube.com/watch?v=TP3H_GefL-0

Conclusions

- Internet security is challenging
 - Attackers can easily send unwanted traffic
 - ... that can compromise or overwhelm the destination computer
- Access control is a crucial defense
 - Blocking unwanted traffic based on packet header fields
 - Static access control policy when possible, dynamic when necessary
- Enforcing access control lists
 - Software algorithms for multi-dimensional packet classification
 - Ternary Content Addressable Memory (TCAMs)