
Neil Agarwal
December 5, 2023

Case Study: Systems & Machine Learning
COS 316: Principles of Computer System Design
Lecture 23

1

This class: Designing Computer Systems

• Networked systems, operating systems, distributed systems, database systems, etc.
• Design aspects: naming, layering, concurrency, security, caching, etc.

2

Systems <-> Machine Learning

• Two main flavors:
• Machine learning for Systems
• Systems for Machine Learning

3

Lecture Outline
• Intro to ML for Systems
• Intro to Systems for ML
• ML for Systems Case Studies

• Learning Relaxed Belady for Content Distributional Network Caching
• Neural Adaptive Video Streaming with Pensive

• Systems for ML Case Studies
• Pipedream: Generalized Pipeline Parallelism for DNN Training
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

4

Machine Learning for Systems
• Systems rely on many heuristic design decisions

• Congestion control (how many bits to send over the network without causing
network congestion!)

• Caching policies (which object to evict from the cache!)
• Load balancing (which server to direct traffic to!)
• …

• ML for Systems: replace heuristics with data-driven approaches (ML)

5

Benefits of Using ML in Systems
• Tailor design for a specific environment

• Data, workload, and operating conditions
• Handle hard-to-model system dynamics

• E.g., interference between workloads on shared resources like CPU caches
• Optimize for high-level system objectives directly

• E.g., job completion time, rather than low level-metrics like server utilization
• Learn data-driven heuristics for hard algorithmic problems

• E.g., scheduling often involves combinatorial optimization problems with no general efficient
algorithms

Slide Credits: Mohammad Alizadeh 6

Machine Learning for Systems Case Studies
• Learning Relaxed Belady for Content Distributional Network Caching

• Using ML to predict which object to evict from the cache
• Neural Adaptive Video Streaming with Pensive

• Using ML to predict the rate at which you should stream video data

7

Lecture Outline
• Intro to ML for Systems
• Intro to Systems for ML
• ML for Systems Case Studies

• Learning Relaxed Belady for Content Distributional Network Caching
• Neural Adaptive Video Streaming with Pensive

• Systems for ML Case Studies
• Pipedream: Generalized Pipeline Parallelism for DNN Training
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

8

Systems for Machine Learning

9Slide Credits: Pooyan Jamshidi

Systems for
Machine Learning

How to make ML algorithms work with other parts to solve real world problems

Systems for Machine Learning

10Slide Credits: Pooyan Jamshidi

How to make ML algorithms work with other parts to solve real world problems
• Defining interfaces, algorithms, data, infrastructure, and hardware
• With the goal of satisfying specified requirements (reliability, scalability, maintainability,

adaptability, efficiency)
• Example questions

• How can we run models more efficiently on this heterogeneous cluster of hardware!
• How can we reduce network or memory bottlenecks!
• How can we scale to more data!

Systems for Machine Learning Case Studies
• Pipedream: Generalized Pipeline Parallelism for DNN Training

• Better scheduling techniques for large-scale machine learning training jobs
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the

Edge
• Reducing GPU memory bottlenecks for video analytics inference on edge servers

11

Systems <-> Machine Learning

• Two main flavors:
• Machine learning for Systems

• Replacing system heuristics/control with ML algorithms
• Systems for Machine Learning

• Optimizing system level aspects to improve the machine learning pipeline (e.g.,
training, inference)

12

Lecture Outline
• Intro to ML for Systems
• Intro to Systems for ML
• ML for Systems Case Studies

• Learning Relaxed Belady for Content Distributional Network Caching
• Neural Adaptive Video Streaming with Pensive

• Systems for ML Case Studies
• Pipedream: Generalized Pipeline Parallelism for DNN Training
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

13

ML For Systems Case Study #1: Caching

14

Content Delivery Network (CDN)

15

CDNs store cached
content on edge
servers in point-of-
presence (POP
locations that are
close to users, to
minimize latency
and bandwidth
costs.

CDN Caching Goal: Minimize Cache Misses

16

“Can I have an
object A please!”

CDN Cache

Cloud Server

“Can I have an
object A please!”

CDN Cache

Cloud Server
MISS

HIT
Goal: reduce cache
misses (and
requests to cloud
server)"

Key question: when
cache is full, which
object should the
cache evict!

Cache Heuristic Algorithms

17

• Which object to evict!
• First in first out (FIFO)
• Least Recently Used (LRU)
• Least Frequently Used (LFU)
• …

Oracle Algorithm: Belady’s MIN Algorithm

18

• Oracle algorithm: optimal algorithm if you knew all future requests
• In reality, this is not possible…

• Belady’s MIN Algorithm:
• Evict object in cache with the furthest next request

• Goal of this paper:
• Approximate Belady’s MIN algorithm

19

Challenge: Hard to Mimic Belady (Oracle) Algorithm

Mimicking exact Belady is impractical
● Need predictions for all objects → prohibitive computational cost
● Need exact prediction of next access → further prediction are harder

Belady: evict object with next access farthest in the future

14

Cache
 (now)

A
······

B

C D

Time to next request

D B A C······ ······

Evict

Slide Credits: Zhenyu Song

20

Introducing the Relaxed Belady Algorithm

Observation: many objects are good candidates for eviction

Relaxed Belady evicts an objects beyond boundary

15

Cache
 (now)

A
······

B

C D

Time to next request

D B A C······ ······

EvictBelady boundary

● Do not need predictions for all objects → reasonable computation
● No need to differentiate beyond boundary → simplifies the prediction

Slide Credits: Zhenyu Song

Learning a Relaxed Belady Algorithm

21

• ML prediction problem: for a subsample of objects in the cache, predict whether their future
request time is beyond the “belady boundary”; if so, evict"

• Features:
• Object size
• Object type
• Inter-request distances (recency)
• Exponential Decay Counters (long term frequencies)

• Model Architecture: gradient boosting decision trees

22

CDN-B1 CDN-B3CDN-B2

LRB Consistently Improves on the State of the Art

Wikipedia CDN-A1 CDN-A2

31
Slide Credits: Zhenyu Song

ML For Systems Case Study #1: Caching

23

• Key insight: use machine learning to approximate an oracle caching algorithm
• Paper & presentation available @ https://www.usenix.org/conference/nsdi20/

presentation/song

https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song

Lecture Outline
• Intro to ML for Systems
• Intro to Systems for ML
• ML for Systems Case Studies

• Learning Relaxed Belady for Content Distributional Network Caching
• Neural Adaptive Video Streaming with Pensive

• Systems for ML Case Studies
• Pipedream: Generalized Pipeline Parallelism for DNN Training
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

24

ML For Systems Case Study #2: Video Streaming

25

Users start leaving if video doesn’t play in 2 seconds

Slide Credits: Hongzi Mao26

27
27 Slide Credits: Hongzi Mao

Why is ABR Challenging?

Throughput

Video bitrate

Network throughput is
variable & uncertain

Conflicting QoE goals

• Bitrate
• Rebuffering time
• Smoothness

Th
ro

ug
hp

ut

Bi
tr

at
e

 (M
bp

s)

Bu
ffe

r s
ize

 (s

ec
)

28 Slide Credits: Hongzi Mao

Why is ABR Challenging?

Throughput

Video bitrate

Network throughput is
variable & uncertain

Conflicting QoE goals

• Bitrate
• Rebuffering time
• Smoothness

Cascading effects
of decisions

Th
ro

ug
hp

ut

Bi
tr

at
e

 (M
bp

s)

Bu
ffe

r s
ize

 (s

ec
)

28 Slide Credits: Hongzi Mao

• Rate-based: pick bitrate based on predicted throughput
• FESTIVE [CoNEXT’12], PANDA [JSAC’14], CS2P [SIGCOMM’16]

• Buffer-based: pick bitrate based on buffer occupancy
• BBA [SIGCOMM’14], BOLA [INFOCOM’16]

• Hybrid: use both throughput prediction & buffer occupancy
• PBA [HotMobile’15], MPC [SIGCOMM’15]

Simplified inaccurate model leads to suboptimal performance

Previous Fixed ABR Algorithms

29 Slide Credits: Hongzi Mao

buffer

ABR agent
bitrates

240P

480P

720P

1080P

network and video measurements

bandwidth

bit rate

720P

Our Contribution: Pensieve

Pensieve learns ABR algorithm automatically through experience

30 Slide Credits: Hongzi Mao

Reinforcement Learning

Goal: maximize the cumulative reward

Agent Environment

Observe state

Take action

Reward

31 Slide Credits: Hongzi Mao

Action

Pensieve Design

State

xt xt-1

n1 n2 nm

bt

ct

lt

Past chunk throughput

Next chunk sizes

Current buffer size

Remaining chunks

Last chunk bit rate

State st

τt τt-1

xt-k+1

τt-k+1

Past chunk download time

btPast chunk bitrate

st

ct

+ !("#) − $%# − & !("#) − !("#−1)
Reward rt

+ (bitrate) - (rebuffering) - (smoothness)

720PAc
tio

n
a t

1D-CNN

1D-CNN

1D-CNN

1080P

720P

360P

240P

Agent

32 Slide Credits: Hongzi Mao

How to Train the ABR Agent

ABR agent

state

Neural Network

240P

480P
720P
1080P

 policy
πθ(s, a)

Take action a
next bitrate

Observe state s

parameter θ

estimate from
empirical data

Training:

Collect experience data: trajectory of [state, action, reward]

33 Slide Credits: Hongzi Mao

What Pensieve is good at

• Learn the dynamics directly from experience

• Optimize the high level QoE objective end-to-end

• Extract control rules from raw high-dimensional signals

3434 Slide Credits: Hongzi Mao

Pensieve Training System

{state, action, reward}
experiences

updated neural
network parameters

Video playback
Fast chunk-level simulator

Pensieve
worker

Pensieve
worker

Pensieve
worker

Pensieve
master

Model update
TensorFlow

Large corpus of
network traces

cellular, broadband, synthetic

35 Slide Credits: Hongzi Mao

Pe
ns

ie
ve

M
PC

Demo

chances of outage

Pe
ns

ie
ve

bu

ff
er

 (s
ec

)
M

PC

bu
ff

er
 (s

ec
)

Th
ro

ug
hp

ut

(m
bp

s)

36 Slide Credits: Hongzi Mao

ML For Systems Case Study #2: Video Streaming

37

• Key insight: use machine learning to learn an adaptive bitrate control algorithm"
• Paper & presentation available @ https://web.mit.edu/pensieve/

https://web.mit.edu/pensieve/

Lecture Outline
• Intro to ML for Systems
• Intro to Systems for ML
• ML for Systems Case Studies

• Learning Relaxed Belady for Content Distributional Network Caching
• Neural Adaptive Video Streaming with Pensive

• Systems for ML Case Studies
• Pipedream: Generalized Pipeline Parallelism for DNN Training
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

38

Systems for ML Case Study #1: ML Training

39

Deep Neural Networks have empowered state of
the art results across a range of applications…

2

cat dog

வண#க%எ'ெபய+த-ப#

Hello, my name is Deepak

Machine Translation

Game PlayingSpeech-to-Text

Image Classification

40
Slide Credits:
Deepak Narayanan

…but first need to be trained!

3

!" = tiger

$" =

activations

gradients

% optimized using standard iterative optimization procedures
% = % − ' ⋅ ∇%

*%
loss(!", 0!")

0!" = lion
prediction

Weight parameters %

41
Slide Credits:
Deepak Narayanan

Background: DNN Training

4

!" = tiger

$" =

activations

gradients

W optimized using standard iterative optimization procedures
% = % − ' ⋅ ∇%

*%
loss(!", 0!")

0!" = lion
prediction

Weight parameters %

Model training time- and compute- intensive!

42
Slide Credits:
Deepak Narayanan

Parallelizing DNN Training: Data Parallelism

…

Worker 1

∇" = ∇"$ + ∇"& +⋯+ ∇"(

∇"$

Gradient aggregation using AllReduce

) copies of the
same model

5

Despite many performance optimizations,
communication overhead high!

8xV100s with NVLink (AWS)
PyTorch + NCCL 2.4

…

Worker *
∇"(

43Slide Credits: Deepak Narayanan

Worker !

Parallelizing DNN training: Model Parallelism

All inputs

Single version of weights split over workers

Activations and gradients sent between
workers using peer-to-peer communication

6

Low hardware efficiency

Worker 1

4444
Slide Credits:
Deepak Narayanan

PipeDream: Pipeline-Parallel Training

7

Pipeline-parallel training up to 5.3x faster than data parallelism
without sacrificing on final accuracy of the model

We propose pipeline parallelism, a combination of data and model parallelism with pipelining

45
Slide Credits:
Deepak Narayanan

Pipelining in DNN Training != Traditional Pipelining

8

• How should the operators in a DNN model be partitioned into pipeline stages?
• Each operator has a different computation time
• Activations and gradients need to be communicated across stages

• How should forward and backward passes of different inputs be scheduled?
• Training is bidirectional
• Forward pass followed by backward pass to compute gradients

• How should weight and activation versions be managed?
• Backward pass operators depend on internal state (!, activations)

46
Slide Credits:
Deepak Narayanan

PipeDream Profiler and Optimizer

13

Computational
graph with profileInput DNN

Deployment constraints such as
number of accelerators, memory and

interconnect characteristics

Optimizer

Profiler
Determines a partitioning of operators
amongst workers, while also deciding
replication factors

Generalizes along many axes
• Hardware topologies
• Model structures
• Memory capacities of workers

See paper for details of
algorithm!

47
Slide Credits:
Deepak Narayanan

1F1B Scheduling
Workers alternate between forward and backward passes
• Workers always utilized
• Gradients used to update model immediately

15To support stage replication, need to modify this mechanism slightly – see paper for details!
48Slide Credits: Deepak Narayanan

Naïve pipelining leads to weight version mismatches

Naïve pipelining leads to mismatch in weight versions

Input ! sees updates in backward pass not seen in the forward
pass, leading to incorrect gradients

17

"#$# %# Forward pass

"#&'∇$# ∇%# Backward pass

"#&)

49
Slide Credits:
Deepak Narayanan

!"#" $" Forward pass

%&∇#" ∇$" Backward pass

!"()

1F1B Scheduling + Weight Stashing
Naïve pipelining leads to mismatch in weight versions

Store multiple <weight, activation> versions
• Ensures same weight versions used in both forward and backward pass

• Worst case memory footprint similar to data parallelism (= + ⋅ -(/ (0) ")
18

!" !"() !"(2
Stashed weights

50Slide Credits: Deepak Narayanan

Systems for ML Case Study #1: ML Training

51

• Key insight: use pipelining of mini batches of data to improve parallel training throughput
• Paper available @ https://www.microsoft.com/en-us/research/uploads/prod/2019/08/pipedream.pdf
• Presentation available @ https://sosp19.rcs.uwaterloo.ca/videos/D1-S1-P1.mp4

https://www.microsoft.com/en-us/research/uploads/prod/2019/08/pipedream.pdf
https://sosp19.rcs.uwaterloo.ca/videos/D1-S1-P1.mp4

Lecture Outline
• Intro to ML for Systems
• Intro to Systems for ML
• ML for Systems Case Studies

• Learning Relaxed Belady for Content Distributional Network Caching
• Neural Adaptive Video Streaming with Pensive

• Systems for ML Case Studies
• Pipedream: Generalized Pipeline Parallelism for DNN Training
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

52

Systems For ML Case Study #2: ML Inference

53

Live Video Analytics Pipeline

Video Frame Convolutional Neural Network
Car

Tree

Person

Model Output

Goal: Maximize query accuracy, subject
to latency SLAs and resource constraints

54

Live Video Analytics Pipeline
Wide Area Network

54

Cloud Servers

Moving Pipelines to the Edge

Reduce network overheads

Limited and inelastic resources!
55Edge Servers

Cloud Servers

Edge Workloads in the Wild

56

Pilot video analytics deployment across 2 major
US cities, targeted at road traffic monitoring
Query: <camera feed, model, task>

Query # Camera Feed Model Architecture Task Description
1 3 FRCNN-R50 Object detection of cars
2 1 YOLOv3 Object detection of people
3 1 Inception Binary Classification of people, vehicles
4 6 ResNet50 Binary Classification of cars, buses, trucks
5 3 Tiny-YOLOv3 Object Detection of people
… … … …

Sample Workload

Executing Edge Workloads

57

Edge Box
GPU Memory

Edge Box

Workload Models

θ2

θ1
θ3

θ4

θ5

θ6

θ7

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

Workloads are Outgrowing Edge GPU Memory
Wo

rkl
oa

d M
em

ory
 GP

U (
GB

)

0

7.5

15

22.5

30

Workload #
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 GB

8 GB

16 GB

1 Frame/Batch 4 Frame/Batch

Typical GPU
Memory Offerings
in Commercial
Edge Boxes

58

θ2

θ1
θ3

θ4

θ5

θ6

θ7

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

Time-Sharing of GPU Memory

60

Edge Box Workload Models

Edge Box
GPU Memory

θ2

θ1
θ3

θ4

θ5

θ6

θ7

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

Skipped processing of 19-84% of
frames and accuracy drops up to 43%

Implication: cannot keep up with frame rate and
must drop frames due to SLA violations

Model Loading Time (ms) Run Time (ms)
YOLOv3 49.5 17.0
ResNet152 73.3 24.8
ResNet50 27.1 8.4
VGG16 72.2 2.1
Tiny YOLOv3 6.7 3.0

Repeatedly loading
models into GPU
memory is slow

How to reduce GPU
memory bottlenecks in
edge video analytics?Gemel

Opportunity: reduce memory overheads by
exploiting redundancies across models

Observation: despite workload diversity, models
often share many layer definitions

61

g1
θ (x) g2

θ (x) g3
θ (x) g4

θ (x)

f2
θ (x) ≡ g3

θ (x)

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

Shared Layer Definitions Across Models

62

f1
θ (x) f2

θ (x) f3
θ (x)

θ2

θ1
θ3

θ4

θ5

θ6

θ7

Shared layer definitions appear in…
Models from the Same Architecture Family

e.g., VGG16 & VGG19

63

~

~

~

~

Models from Different Architecture Families
e.g., VGG16 & AlexNet

~

~

~

Across 24 different architectures, 43% of all pairs of different models have shared layers

Idea: Find unified weights for shared layers

64

θ2

θ1
θ3

θ4

θ5

θ6

θ7

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ6

Same layer definition!
Same layer definition!

Same layer definition!

Idea: Find unified weights for shared layers

64

θ2

θ1
θ3

θ4

θ5

θ6

θ7

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ1

θ2

θ3

θ4

θ1

θ2

θ3

θ4

θ1

θ2

θ3

θ4

θ6

θ2

θ1

θ2

θ1

θ3

θ4

θ5

θ6

θ3

θ4

θ5

θ6

Unified weights!

Unified weights!

Unified weights!

Edge Box
GPU Memory

θ1

θ2

θ3

θ4

θ2

θ1

θ7

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ1

θ2

θ3

θ4

θ2

θ1

θ3

θ4

θ5

θ6

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

θ1

θ2

θ3

θ4

θ3

θ4

θ5

θ6

Benefits

66

Edge Box

Workload Models
(with unified weights)

θ3

θ4

θ5

θ6

θ11

Reduce per-workload
memory usage by 17-86%

Fewer Number of Swaps
θ1

θ2

θ3

θ4

θ13
Remaining
Swaps are Faster

θ1

θ2

θ3

θ4

Process 29-61% more frames"

Model Merging

Jointly Retrain
Models

67

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ′ 11

θ1

θ2

θ3

θ4

θ2

θ1

θ3

θ4

θ5

θ6

θ′ 1

θ′ 2

θ′ 3

θ′ 4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ′ 13

θ1

θ2

θ3

θ4

θ3

θ4

θ5

θ6
θ1

θ2

θ3

θ4

θ2

θ1

θ′ 7

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

θ12

θ13

θ7

θ2

θ1
θ3

θ4

θ5

θ6

θ7

Systems For ML Case Study #2: ML Inference

68

• Key insight: compress layers across models to reduce GPU memory overheads"
• Paper & presentation available @ https://www.usenix.org/conference/nsdi23/

presentation/padmanabhan

https://www.usenix.org/conference/nsdi23/presentation/padmanabhan
https://www.usenix.org/conference/nsdi23/presentation/padmanabhan
https://www.usenix.org/conference/nsdi23/presentation/padmanabhan
https://www.usenix.org/conference/nsdi23/presentation/padmanabhan

Systems <-> Machine Learning
• Machine learning for Systems

• Replacing system heuristics/control with ML algorithms
• Examples: caching eviction policy, ABR algorithm

• Systems for Machine Learning
• Optimizing system level aspects to improve the machine learning pipeline (e.g., training,

inference)
• Examples: use pipeline parallelism to improve resource utilization for large-model training,

use inter-model compression to reduce GPU memory overheads for video analytics
inference jobs

69

Systems <-> Machine Learning Resources
• MIT 6.887: Machine Learning for Systems (https://dsg.csail.mit.edu/6.887/assign.php)
• Stanford CS329: Machine Learning Systems Design (https://stanford-cs329s.github.io/)
• UofSC CSCE 585: Machine Learning Systems (https://pooyanjamshidi.github.io/mls/)
• Princeton COS 598D: Systems and Machine Learning (https://www.cs.princeton.edu/

courses/archive/spring21/cos598D/general.html)
• Cassie Kozyrkov's Making Friends with Machine Learning (https://www.youtube.com/

watch!v=1vkb7BCMQd0)
• Chip Huyen's MLOps Guide (https://huyenchip.com/mlops/)

70

https://dsg.csail.mit.edu/6.887/assign.php
https://stanford-cs329s.github.io/
https://pooyanjamshidi.github.io/mls/
https://www.cs.princeton.edu/courses/archive/spring21/cos598D/general.html
https://www.cs.princeton.edu/courses/archive/spring21/cos598D/general.html
https://www.cs.princeton.edu/courses/archive/spring21/cos598D/general.html
https://www.cs.princeton.edu/courses/archive/spring21/cos598D/general.html
https://www.youtube.com/watch?v=1vkb7BCMQd0
https://www.youtube.com/watch?v=1vkb7BCMQd0
https://www.youtube.com/watch?v=1vkb7BCMQd0
https://www.youtube.com/watch?v=1vkb7BCMQd0
https://huyenchip.com/mlops/

