Case Study: Systems & Machine Learning

COS 316: Principles of Computer System Design Lecture 23

Neil Agarwal December 5, 2023

This class: Designing Computer Systems

- Design aspects: naming, layering, concurrency, security, caching, etc.

Networked systems, operating systems, distributed systems, database systems, etc.

Systems <-> Machine Learning

- Two main flavors:
 - Machine learning for Systems
 - Systems for Machine Learning

Lecture Outline

- Intro to ML for Systems
- Intro to Systems for ML
- ML for Systems Case Studies
 - Learning Relaxed Belady for Content Distributional Network Caching
 - Neural Adaptive Video Streaming with Pensive
- Systems for ML Case Studies
 - Pipedream: Generalized Pipeline Parallelism for DNN Training

• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

Machine Learning for Systems

- Systems rely on many *heuristic* design decisions
 - Congestion control (how many bits to send over the network without causing network congestion?)
 - Caching policies (which object to evict from the cache?)
 - Load balancing (which server to direct traffic to?)
 - ...
- ML for Systems: replace heuristics with data-driven approaches (ML) \bullet

Benefits of Using ML in Systems

- Tailor design for a specific environment
 - Data, workload, and operating conditions
- Handle hard-to-model system dynamics
 - E.g., interference between workloads on shared resources like CPU caches
- Optimize for high-level system objectives directly
 - E.g., job completion time, rather than low level-metrics like server utilization
- Learn data-driven heuristics for hard algorithmic problems
 - E.g., scheduling often involves combinatorial optimization problems with no general efficient algorithms

Slide Credits: Mohammad Alizadeh

Machine Learning for Systems Case Studies

- Learning Relaxed Belady for Content Distributional Network Caching
 - Using ML to predict which object to evict from the cache
- Neural Adaptive Video Streaming with Pensive
 - Using ML to predict the rate at which you should stream video data

Lecture Outline

- Intro to ML for Systems
- Intro to Systems for ML
- ML for Systems Case Studies
 - Learning Relaxed Belady for Content Distributional Network Caching
 - Neural Adaptive Video Streaming with Pensive
- Systems for ML Case Studies
 - Pipedream: Generalized Pipeline Parallelism for DNN Training

• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

Systems for Machine Learning

How to make ML algorithms work with other parts to solve real world problems

Slide Credits: Pooyan Jamshidi

Systems for Machine Learning

How to make ML algorithms work with other parts to solve real world problems

- Defining interfaces, algorithms, data, infrastructure, and hardware lacksquare
- With the goal of satisfying specified requirements (reliability, scalability, maintainability, lacksquareadaptability, efficiency)
- Example questions

 - How can we run models more efficiently on this heterogeneous cluster of hardware? How can we reduce network or memory bottlenecks?
 - How can we scale to more data?

Slide Credits: Pooyan Jamshidi

Systems for Machine Learning Case Studies

- Pipedream: Generalized Pipeline Parallelism for DNN Training
 - Better scheduling techniques for large-scale machine learning training jobs
- Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge
 - Reducing GPU memory bottlenecks for video analytics inference on edge servers

Systems <-> Machine Learning

- Two main flavors:
 - Machine learning for Systems
 - Replacing system heuristics/control with ML algorithms
 - Systems for Machine Learning
 - training, inference)

Optimizing system level aspects to improve the machine learning pipeline (e.g.,

Lecture Outline

- Intro to ML for Systems
- Intro to Systems for ML
- ML for Systems Case Studies
 - Learning Relaxed Belady for Content Distributional Network Caching
 - Neural Adaptive Video Streaming with Pensive
- Systems for ML Case Studies
 - Pipedream: Generalized Pipeline Parallelism for DNN Training

• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

ML For Systems Case Study #1: Caching

Learning Relaxed Belady for Content Distribution Network Caching

Zhenyu Song

Daniel S. Berger Princeton University Microsoft Research & CMU Princeton University

Kai Li

Wyatt Lloyd **Princeton University**

Content Delivery Network (CDN)

CDNs store cached content on edge servers in point-ofpresence (POP locations that are close to users, to minimize latency and bandwidth costs.

CDN Caching Goal: Minimize Cache Misses

Goal: reduce cache misses (and requests to cloud server)!

Key question: when cache is full, which object should the cache evict?

Cache Heuristic Algorithms

• Which object to evict?

...

- First in first out (FIFO)
- Least Recently Used (LRU)
- Least Frequently Used (LFU)

Oracle Algorithm: Belady's MIN Algorithm

- Oracle algorithm: optimal algorithm if you knew all future requests
 - In reality, this is not possible...
- Belady's MIN Algorithm:
 - Evict object in cache with the furthest next request
- Goal of this paper:
 - Approximate Belady's MIN algorithm

Challenge: Hard to Mimic Belady (Oracle) Algorithm Belady: evict object with next access farthest in the future

Mimicking exact Belady is impractical

Slide Credits: Zhenyu Song

Time to next request

Need predictions for all objects \rightarrow prohibitive computational cost Need exact prediction of next access \rightarrow further prediction are harder

Cache (now)

Relaxed Belady evicts an objects beyond boundary

- Do not need predictions for all objects \rightarrow reasonable computation
- No need to differentiate beyond boundary \rightarrow simplifies the prediction

Slide Credits: Zhenyu Song

Observation: many objects are good candidates for eviction

Learning a Relaxed Belady Algorithm

- request time is beyond the "belady boundary"; if so, evict!
- Features:
 - Object size
 - Object type
 - Inter-request distances (recency)
 - Exponential Decay Counters (long term frequencies)
- Model Architecture: gradient boosting decision trees

• ML prediction problem: for a subsample of objects in the cache, predict whether their future

Slide Credits: Zhenyu Song

ML For Systems Case Study #1: Caching

Learning Relaxed Belady for Content Distribution Network Caching

Zhenyu Song Princeton University

Daniel S. Berger Kai Li Microsoft Research & CMU Princeton University

- presentation/song

Wyatt Lloyd **Princeton University**

Key insight: use machine learning to approximate an oracle caching algorithm

Paper & presentation available @ https://www.usenix.org/conference/nsdi20/

Lecture Outline

- Intro to ML for Systems
- Intro to Systems for ML
- ML for Systems Case Studies
 - Learning Relaxed Belady for Content Distributional Network Caching
 - Neural Adaptive Video Streaming with Pensive
- Systems for ML Case Studies
 - Pipedream: Generalized Pipeline Parallelism for DNN Training

• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

ML For Systems Case Study #2: Video Streaming

Neural Adaptive Video Streaming with Pensieve

Hongzi Mao, Ravi Netravali, Mohammad Alizadeh MIT Computer Science and Artificial Intelligence Laboratory {hongzi,ravinet,alizadeh}@mit.edu

Users start leaving if video doesn't play in 2 seconds

Dynamic Streaming over HTTP (DASH)

Video Client

Video Server

Why is ABR Challenging?

Network throughput is variable & uncertain

Conflicting QoE goals

- Bitrate
- Rebuffering time
- Smoothness

Why is ABR Challenging?

Network throughput is variable & uncertain

Conflicting QoE goals

- Bitrate
- Rebuffering time
- Smoothness

Cascading effects of decisions

Previous Fixed ABR Algorithms

- Rate-based: pick bitrate based on predicted throughput • FESTIVE [CONEXT'12], PANDA [JSAC'14], CS2P [SIGCOMM'16]
- Buffer-based: pick bitrate based on buffer occupancy • BBA [SIGCOMM'14], BOLA [INFOCOM'16]
- Hybrid: use both throughput prediction & buffer occupancy PBA [HotMobile'15], MPC [SIGCOMM'15]

Simplified inaccurate model leads to suboptimal performance

Our Contribution: Pensieve

Pensieve learns ABR algorithm automatically through experience

Goal: maximize the cumulative reward

Pensieve Design

How to Train the ABR Agent

Collect experience data: trajectory of [state, action, reward]

What Pensieve is good at

Learn the dynamics directly from experience

- Optimize the high level QoE objective end-to-end

• Extract control rules from raw high-dimensional signals

Pensieve Training System

Large corpus of network traces

Fast chunk-level simulator

cellular, broadband, synthetic

Video playback

Model update

TensorFlow

MPC

Pensieve 2

Demo

Slide Credits: Hongzi Mao

ML For Systems Case Study #2: Video Streaming

Neural Adaptive Video Streaming with Pensieve

Hongzi Mao, Ravi Netravali, Mohammad Alizadeh MIT Computer Science and Artificial Intelligence Laboratory {hongzi,ravinet,alizadeh}@mit.edu

- Paper & presentation available @ https://web.mit.edu/pensieve/

• Key insight: use machine learning to learn an adaptive bitrate control algorithm!

Lecture Outline

- Intro to ML for Systems
- Intro to Systems for ML
- ML for Systems Case Studies
 - Learning Relaxed Belady for Content Distributional Network Caching
 - Neural Adaptive Video Streaming with Pensive
- Systems for ML Case Studies
 - Pipedream: Generalized Pipeline Parallelism for DNN Training

• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

Systems for ML Case Study #1: ML Training

PipeDream: Generalized Pipeline Parallelism for DNN Training

Deepak Narayanan[‡]*, Aaron Harlap[†]*, Amar Phanishayee*, Vivek Seshadri*, Nikhil R. Devanur*, Gregory R. Ganger[†], Phillip B. Gibbons[†], Matei Zaharia[‡] *Microsoft Research [†]Carnegie Mellon University [‡]Stanford University

Deep Neural Networks have empowered state of the art results across a range of applications...

Image Classification

Slide Credits: Deepak Narayanan

Speech-to-Text

வணக்கம் என் பெயர் தீபக் ______

Hello, my name is Deepak

Machine Translation

Game Playing

 $W = W - \eta \cdot \nabla W$

Slide Credits: Deepak Narayanan W optimized using standard iterative optimization procedures

Background: DNN Training

Model training time- and compute- intensive!

Slide Credits: Deepak Narayanan

Parallelizing DNN Training: Data Parallelism

 $\nabla W = \nabla W^1 + \nabla W^2 + \dots + \nabla W^n$

Gradient aggregation using AllReduce Slide Credits: Deepak Narayanan

Despite many performance optimizations, **communication overhead high!**

Parallelizing DNN training: Model Parallelism

Single version of weights split over workers

Activations and gradients sent between workers using peer-to-peer communication *Slide Credits:*

Deepak Narayanan

Low hardware efficiency

2

2

PipeDream: Pipeline-Parallel Training

We propose **pipeline parallelism**, a combination of data and model parallelism with pipelining

Pipeline-parallel training up to **5.3x faster** than data parallelism without sacrificing on final accuracy of the model

Slide Credits: Deepak Narayanan Worker 1

Worker 2

Worker 3

Worker 4

Pipelining in DNN Training != Traditional Pipelining

- How should the operators in a DNN model be partitioned into pipeline stages?
 - Each operator has a **different computation time** \bullet
 - Activations and gradients need to be **communicated** across stages
- How should forward and backward passes of different inputs be scheduled?
 - Training is **bidirectional**
 - Forward pass followed by backward pass to compute gradients
- How should weight and activation versions be managed?
 - Backward pass operators depend on **internal state** (*W*, activations) \bullet

Slide Credits: Deepak Narayanan

PipeDream Profiler and Optimizer

Computational graph with profile

Deployment constraints such as number of accelerators, memory and interconnect characteristics

Slide Credits: Deepak Narayanan

Determines a partitioning of operators amongst workers, while also deciding replication factors

Generalizes along many axes

- Hardware topologies
- Model structures
- Memory capacities of workers \bullet

See paper for details of algorithm!

1F1B Scheduling

Workers **alternate** between forward and backward passes

- Workers always utilized lacksquare
- Gradients used to update model immediately \bullet

3

2

3

2

3

Worker 1

- Worker 2
- Worker 3
- Worker 4

Startup State

2

2

Forward Pass

To support stage replication, need to modify this mechanism slightly – see paper for details!

Slide Credits: Deepak Narayanan

Naive pipelining leads to weight version mismatches

Naive pipelining leads to **mismatch in weight versions**

Input *n* sees updates in backward pass not seen in the forward pass, leading to incorrect gradients

Slide Credits: Deepak Narayanan

1F1B Scheduling + Weight Stashing

Naïve pipelining leads to **mismatch in weight versions**

Store multiple <weight, activation> versions

• Ensures same weight versions used in both forward and backward pass

Slide Credits: Deepak Narayanan

Systems for ML Case Study #1: ML Training

PipeDream: Generalized Pipeline Parallelism for DNN Training

Deepak Narayanan[‡]*, Aaron Harlap[†]*, Amar Phanishayee*, Vivek Seshadri*, Nikhil R. Devanur*, Gregory R. Ganger[†], Phillip B. Gibbons[†], Matei Zaharia[‡] *Microsoft Research [†]Carnegie Mellon University [‡]Stanford University

- Key insight: use pipelining of mini batches of data to improve parallel training throughput
- \bullet
- Presentation available @ <u>https://sosp19.rcs.uwaterloo.ca/videos/D1-S1-P1.mp4</u>

Paper available @ https://www.microsoft.com/en-us/research/uploads/prod/2019/08/pipedream.pdf

Lecture Outline

- Intro to ML for Systems
- Intro to Systems for ML
- ML for Systems Case Studies
 - Learning Relaxed Belady for Content Distributional Network Caching
 - Neural Adaptive Video Streaming with Pensive
- Systems for ML Case Studies
 - Pipedream: Generalized Pipeline Parallelism for DNN Training

• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

Systems For ML Case Study #2: ML Inference

Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

Arthi Padmanabhan*§ Yuanchao Shu[‡]

Neil Agarwal^{*¶} Anand Iyer[†] Guoqing Harry Xu[§] Nikolaos Karianakis[†]

[§]UCLA

Ganesh Ananthanarayanan[†] Ravi Netravali[¶]

[†]Microsoft Research [‡]Zhejiang University [¶]Princeton University

Live Video Analytics Pipeline

Moving Pipelines to the Edge

•

-

Limited and inelastic resources

Edge Servers

Reduce network overheads

55

Edge Workloads in the Wild

Sample Workload

Query #	Camera Feed	Model Architecture	Task Description
1	3	FRCNN-R50	Object detection of cars
2	1	YOLOv3	Object detection of people
3	1	Inception	Binary Classification of people, vehicles
4	6	ResNet50	Binary Classification of cars, buses, trucks
5	3	Tiny-YOLOv3	Object Detection of people
•••	• • •		

Pilot video analytics deployment across 2 major US cities, targeted at road traffic monitoring

Query: <camera feed, model, task>

Executing Edge Workloads

Edge Box

Edge Box GPU Memory

Workload Models

57

Workloads are Outgrowing Edge GPU Memory

Time-Sharing of GPU Memory

Model	Loading Time (ms)	Run Time (ms)
YOLOv3	49.5	17.0
ResNet152	73.3	24.8
ResNet50	27.1	8.4
VGG16	72.2	2.1
Tiny YOLOv3	6.7	3.0

Implication: cannot keep up with frame rate and must drop frames due to SLA violations

Skipped processing of 19-84% of frames and accuracy drops up to 43%

Repeatedly loading models into GPU memory is *slow*

Opportunity: reduce memory overheads by exploiting redundancies across models

Observation: despite workload diversity, models often share many layer definitions

How to reduce GPU memory bottlenecks in edge video analytics?

Shared Layer Definitions Across Models

 $f_{\theta}^2(x) \equiv g_{\theta}^3(x)$

Shared layer definitions appear in...

Models from the Same Architecture Family

e.g., VGG16 & VGG19

Models from Different Architecture Families

e.g., VGG16 & AlexNet

Across 24 different architectures, 43% of all pairs of different models have shared layers

Idea: Find unified weights for shared layers

Idea: Find unified weights for shared layers

Benefits

Edge Box

Workload Models (with unified weights)

Remaining **Swaps are Faster**

Model Merging

Systems For ML Case Study #2: ML Inference

Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

Arthi Padmanabhan*§ Yuanchao Shu[‡]

Neil Agarwal^{*¶} Anand Iyer[†] Ganesh Ananthanarayanan[†] Nikolaos Karianakis[†] Ravi Netravali[¶] Guoqing Harry Xu[§]

[§]UCLA

- presentation/padmanabhan

[†]Microsoft Research [‡]Zhejiang University [¶]Princeton University

Key insight: compress layers across models to reduce GPU memory overheads!

Paper & presentation available @ https://www.usenix.org/conference/nsdi23/

Systems <-> Machine Learning

- Machine learning for Systems
 - Replacing system heuristics/control with ML algorithms
 - *Examples*: caching eviction policy, ABR algorithm
- Systems for Machine Learning
 - inference)
 - inference jobs

Optimizing system level aspects to improve the machine learning pipeline (e.g., training,

• Examples: use pipeline parallelism to improve resource utilization for large-model training, use inter-model compression to reduce GPU memory overheads for video analytics

Systems <-> Machine Learning Resources

- MIT 6.887: Machine Learning for Systems (<u>https://dsg.csail.mit.edu/6.887/assign.php</u>)
- Stanford CS329: Machine Learning Systems Design (<u>https://stanford-cs329s.github.io/</u>)
- UofSC CSCE 585: Machine Learning Systems (<u>https://pooyanjamshidi.github.io/mls/</u>)
- Princeton COS 598D: Systems and Machine Learning (<u>https://www.cs.princeton.edu/</u> courses/archive/spring21/cos598D/general.html)
- Cassie Kozyrkov's Making Friends with Machine Learning (<u>https://www.youtube.com/</u> watch?v=1vkb7BCMQd0)
- Chip Huyen's MLOps Guide (<u>https://huyenchip.com/mlops/</u>)

