
Neil Agarwal 
December 5, 2023

Case Study: Systems & Machine Learning
COS 316: Principles of Computer System Design 
Lecture 23

1



This class: Designing Computer Systems

• Networked systems, operating systems, distributed systems, database systems, etc.  
• Design aspects: naming, layering, concurrency, security, caching, etc.
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Systems <-> Machine Learning

• Two main flavors: 
• Machine learning for Systems 
• Systems for Machine Learning
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Lecture Outline
• Intro to ML for Systems 
• Intro to Systems for ML 
• ML for Systems Case Studies 

• Learning Relaxed Belady for Content Distributional Network Caching 
• Neural Adaptive Video Streaming with Pensive 

• Systems for ML Case Studies 
• Pipedream: Generalized Pipeline Parallelism for DNN Training 
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge
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Machine Learning for Systems
• Systems rely on many heuristic design decisions 

• Congestion control (how many bits to send over the network without causing 
network congestion!) 

• Caching policies (which object to evict from the cache!) 
• Load balancing (which server to direct traffic to!) 
• …

• ML for Systems: replace heuristics with data-driven approaches (ML)
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Benefits of Using ML in Systems
• Tailor design for a specific environment 

• Data, workload, and operating conditions
• Handle hard-to-model system dynamics 

• E.g., interference between workloads on shared resources like CPU caches
• Optimize for high-level system objectives directly 

• E.g., job completion time, rather than low level-metrics like server utilization
• Learn data-driven heuristics for hard algorithmic problems 

• E.g., scheduling often involves combinatorial optimization problems with no general efficient 
algorithms

Slide Credits: Mohammad Alizadeh 6



Machine Learning for Systems Case Studies
• Learning Relaxed Belady for Content Distributional Network Caching 

• Using ML to predict which object to evict from the cache
• Neural Adaptive Video Streaming with Pensive 

• Using ML to predict the rate at which you should stream video data
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Lecture Outline
• Intro to ML for Systems 
• Intro to Systems for ML 
• ML for Systems Case Studies 

• Learning Relaxed Belady for Content Distributional Network Caching 
• Neural Adaptive Video Streaming with Pensive 

• Systems for ML Case Studies 
• Pipedream: Generalized Pipeline Parallelism for DNN Training 
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge
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Systems for Machine Learning

9Slide Credits: Pooyan Jamshidi

Systems for 
Machine Learning

How to make ML algorithms work with other parts to solve real world problems



Systems for Machine Learning

10Slide Credits: Pooyan Jamshidi

How to make ML algorithms work with other parts to solve real world problems
• Defining interfaces, algorithms, data, infrastructure, and hardware 
• With the goal of satisfying specified requirements (reliability, scalability, maintainability, 

adaptability, efficiency) 
• Example questions 

• How can we run models more efficiently on this heterogeneous cluster of hardware! 
• How can we reduce network or memory bottlenecks! 
• How can we scale to more data!



Systems for Machine Learning Case Studies
• Pipedream: Generalized Pipeline Parallelism for DNN Training 

• Better scheduling techniques for large-scale machine learning training jobs
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the 

Edge 
• Reducing GPU memory bottlenecks for video analytics inference on edge servers
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Systems <-> Machine Learning

• Two main flavors: 
• Machine learning for Systems 

• Replacing system heuristics/control with ML algorithms 
• Systems for Machine Learning 

• Optimizing system level aspects to improve the machine learning pipeline (e.g., 
training, inference)
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Lecture Outline
• Intro to ML for Systems 
• Intro to Systems for ML 
• ML for Systems Case Studies 

• Learning Relaxed Belady for Content Distributional Network Caching 
• Neural Adaptive Video Streaming with Pensive 

• Systems for ML Case Studies 
• Pipedream: Generalized Pipeline Parallelism for DNN Training 
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge

13



ML For Systems Case Study #1: Caching
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Content Delivery Network (CDN)

15

CDNs store cached 
content on edge 
servers in point-of-
presence (POP 
locations that are 
close to users, to 
minimize latency 
and bandwidth 
costs.



CDN Caching Goal: Minimize Cache Misses
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“Can I have an 
object A please!”

CDN Cache

Cloud Server

“Can I have an 
object A please!”

CDN Cache

Cloud Server
MISS

HIT
Goal: reduce cache 
misses (and 
requests to cloud 
server)" 

Key question: when 
cache is full, which 
object should the 
cache evict!



Cache Heuristic Algorithms

17

• Which object to evict! 
• First in first out (FIFO) 
• Least Recently Used (LRU) 
• Least Frequently Used (LFU) 
• …



Oracle Algorithm: Belady’s MIN Algorithm
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• Oracle algorithm: optimal algorithm if you knew all future requests 
• In reality, this is not possible… 

• Belady’s MIN Algorithm: 
• Evict object in cache with the furthest next request 

• Goal of this paper:  
• Approximate Belady’s MIN algorithm
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Challenge: Hard to Mimic Belady (Oracle) Algorithm

Mimicking exact Belady is impractical 
● Need predictions for all objects → prohibitive computational cost
● Need exact prediction of next access → further prediction are harder

Belady: evict object with next access farthest in the future

14

Cache
 (now)

A
······

B

C D

Time to next request

D B A C······ ······

Evict

Slide Credits: Zhenyu Song
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Introducing the Relaxed Belady Algorithm

Observation:  many objects are good candidates for eviction

Relaxed Belady evicts an objects beyond boundary
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Cache
 (now)

A
······

B

C D

Time to next request

D B A C······ ······

EvictBelady boundary

● Do not need predictions for all objects → reasonable computation
● No need to differentiate beyond boundary → simplifies the prediction

Slide Credits: Zhenyu Song



Learning a Relaxed Belady Algorithm
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• ML prediction problem: for a subsample of objects in the cache, predict whether their future 
request time is beyond the “belady boundary”; if so, evict" 

• Features: 
• Object size 
• Object type 
• Inter-request distances (recency) 
• Exponential Decay Counters (long term frequencies) 

• Model Architecture: gradient boosting decision trees
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CDN-B1 CDN-B3CDN-B2

LRB Consistently Improves on the State of the Art

Wikipedia CDN-A1 CDN-A2

31
Slide Credits: Zhenyu Song



ML For Systems Case Study #1: Caching
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• Key insight: use machine learning to approximate an oracle caching algorithm 
• Paper & presentation available @ https://www.usenix.org/conference/nsdi20/

presentation/song

https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song
https://www.usenix.org/conference/nsdi20/presentation/song


Lecture Outline
• Intro to ML for Systems 
• Intro to Systems for ML 
• ML for Systems Case Studies 

• Learning Relaxed Belady for Content Distributional Network Caching 
• Neural Adaptive Video Streaming with Pensive 

• Systems for ML Case Studies 
• Pipedream: Generalized Pipeline Parallelism for DNN Training 
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge
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ML For Systems Case Study #2: Video Streaming
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Users start leaving if video doesn’t play in 2 seconds

Slide Credits: Hongzi Mao26
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Why is ABR Challenging?

Throughput

Video bitrate

Network throughput is 
variable & uncertain

Conflicting QoE goals 

• Bitrate 
• Rebuffering time 
• Smoothness
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Why is ABR Challenging?

Throughput

Video bitrate

Network throughput is 
variable & uncertain

Conflicting QoE goals 

• Bitrate 
• Rebuffering time 
• Smoothness

Cascading effects 
of decisions
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• Rate-based: pick bitrate based on predicted throughput 
• FESTIVE [CoNEXT’12], PANDA [JSAC’14], CS2P [SIGCOMM’16] 

• Buffer-based: pick bitrate based on buffer occupancy  
• BBA [SIGCOMM’14], BOLA [INFOCOM’16] 

• Hybrid: use both throughput prediction & buffer occupancy 
• PBA [HotMobile’15], MPC [SIGCOMM’15]

Simplified inaccurate model leads to suboptimal performance

Previous Fixed ABR Algorithms

29 Slide Credits: Hongzi Mao



buffer

ABR agent
bitrates

240P

480P

720P

1080P

network and video measurements

bandwidth

bit rate

720P

Our Contribution: Pensieve

Pensieve learns ABR algorithm automatically through experience

30 Slide Credits: Hongzi Mao



Reinforcement Learning

Goal: maximize the cumulative reward 

Agent Environment

Observe state 

Take action

Reward

31 Slide Credits: Hongzi Mao



Action 

Pensieve Design
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How to Train the ABR Agent

ABR agent

state 

Neural Network

240P

480P
720P
1080P

 policy  
πθ(s, a)

Take action a 
next bitrate

Observe state s

parameter θ

estimate from  
empirical data

Training:

Collect experience data: trajectory of [state, action, reward]

33 Slide Credits: Hongzi Mao



What Pensieve is good at

• Learn the dynamics directly from experience

• Optimize the high level QoE objective end-to-end 

• Extract control rules from raw high-dimensional signals

3434 Slide Credits: Hongzi Mao



Pensieve Training System

{state, action, reward} 
experiences

updated neural  
network parameters

Video playback 
Fast chunk-level simulator

Pensieve 
worker

Pensieve 
worker

Pensieve 
worker

Pensieve 
master

Model update  
TensorFlow

Large corpus of  
network traces 

cellular, broadband, synthetic

35 Slide Credits: Hongzi Mao
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ML For Systems Case Study #2: Video Streaming
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• Key insight: use machine learning to learn an adaptive bitrate control algorithm" 
• Paper & presentation available @ https://web.mit.edu/pensieve/

https://web.mit.edu/pensieve/


Lecture Outline
• Intro to ML for Systems 
• Intro to Systems for ML 
• ML for Systems Case Studies 

• Learning Relaxed Belady for Content Distributional Network Caching 
• Neural Adaptive Video Streaming with Pensive 

• Systems for ML Case Studies 
• Pipedream: Generalized Pipeline Parallelism for DNN Training 
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge
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Systems for ML Case Study #1: ML Training
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Deep Neural Networks have empowered state of 
the art results across a range of applications…

2

cat dog

வண#க%எ'ெபய+த-ப#

Hello, my name is Deepak

Machine Translation

Game PlayingSpeech-to-Text

Image Classification

40
Slide Credits: 
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…but first need to be trained!

3

!" = tiger

$" =

activations

gradients

% optimized using standard iterative optimization procedures
% = % − ' ⋅ ∇%

*%
loss(!", 0!")

0!" = lion
prediction

Weight parameters %

41
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Background: DNN Training
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!" = tiger

$" =

activations

gradients

W optimized using standard iterative optimization procedures
% = % − ' ⋅ ∇%

*%
loss(!", 0!")

0!" = lion
prediction

Weight parameters %

Model training time- and compute- intensive!

42
Slide Credits: 
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Parallelizing DNN Training: Data Parallelism

…

Worker 1

∇" = ∇"$ + ∇"& +⋯+ ∇"(

∇"$

Gradient aggregation using AllReduce

) copies of the 
same model

5

Despite many performance optimizations, 
communication overhead high!

8xV100s with NVLink (AWS)
PyTorch + NCCL 2.4

…

Worker *
∇"(

43Slide Credits: Deepak Narayanan



Worker !

Parallelizing DNN training: Model Parallelism

All inputs

Single version of weights split over workers

Activations and gradients sent between 
workers using peer-to-peer communication

6

Low hardware efficiency

Worker 1

4444
Slide Credits: 
Deepak Narayanan



PipeDream: Pipeline-Parallel Training
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Pipeline-parallel training up to 5.3x faster than data parallelism 
without sacrificing on final accuracy of the model

We propose pipeline parallelism, a combination of data and model parallelism with pipelining

45
Slide Credits: 
Deepak Narayanan



Pipelining in DNN Training != Traditional Pipelining

8

• How should the operators in a DNN model be partitioned into pipeline stages?
• Each operator has a different computation time
• Activations and gradients need to be communicated across stages

• How should forward and backward passes of different inputs be scheduled?
• Training is bidirectional
• Forward pass followed by backward pass to compute gradients

• How should weight and activation versions be managed? 
• Backward pass operators depend on internal state (!, activations)

46
Slide Credits: 
Deepak Narayanan



PipeDream Profiler and Optimizer

13

Computational 
graph with profileInput DNN

Deployment constraints such as 
number of accelerators, memory and 

interconnect characteristics

Optimizer

Profiler
Determines a partitioning of operators 
amongst workers, while also deciding 
replication factors

Generalizes along many axes
• Hardware topologies
• Model structures
• Memory capacities of workers

See paper for details of 
algorithm!

47
Slide Credits: 
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1F1B Scheduling
Workers alternate between forward and backward passes
• Workers always utilized
• Gradients used to update model immediately

15To support stage replication, need to modify this mechanism slightly – see paper for details! 
48Slide Credits: Deepak Narayanan



Naïve pipelining leads to weight version mismatches

Naïve pipelining leads to mismatch in weight versions

Input ! sees updates in backward pass not seen in the forward 
pass, leading to incorrect gradients

17

"#$# %# Forward pass

"#&'∇$# ∇%# Backward pass

"#&)

49
Slide Credits: 
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!"#" $" Forward pass

%&∇#" ∇$" Backward pass

!"()

1F1B Scheduling + Weight Stashing
Naïve pipelining leads to mismatch in weight versions

Store multiple <weight, activation> versions
• Ensures same weight versions used in both forward and backward pass

• Worst case memory footprint similar to data parallelism (= + ⋅ -( / ( 0 ) ")
18

!" !"() !"(2
Stashed weights

50Slide Credits: Deepak Narayanan



Systems for ML Case Study #1: ML Training
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• Key insight: use pipelining of mini batches of data to improve parallel training throughput 
• Paper available @ https://www.microsoft.com/en-us/research/uploads/prod/2019/08/pipedream.pdf 
• Presentation available @ https://sosp19.rcs.uwaterloo.ca/videos/D1-S1-P1.mp4

https://www.microsoft.com/en-us/research/uploads/prod/2019/08/pipedream.pdf
https://sosp19.rcs.uwaterloo.ca/videos/D1-S1-P1.mp4


Lecture Outline
• Intro to ML for Systems 
• Intro to Systems for ML 
• ML for Systems Case Studies 

• Learning Relaxed Belady for Content Distributional Network Caching 
• Neural Adaptive Video Streaming with Pensive 

• Systems for ML Case Studies 
• Pipedream: Generalized Pipeline Parallelism for DNN Training 
• Gemel: Model Merging for Memory-Efficient, Real-Time Video Analytics at the Edge
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Systems For ML Case Study #2: ML Inference
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Live Video Analytics Pipeline

Video Frame Convolutional Neural Network
Car

Tree

Person

Model Output

Goal: Maximize query accuracy, subject 
to latency SLAs and resource constraints
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Live Video Analytics Pipeline
Wide Area Network

54

Cloud Servers



Moving Pipelines to the Edge

Reduce network overheads

Limited and inelastic resources!
55Edge Servers

Cloud Servers



Edge Workloads in the Wild
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Pilot video analytics deployment across 2 major 
US cities, targeted at road traffic monitoring 
Query: <camera feed, model, task>

Query # Camera Feed Model Architecture Task Description
1 3 FRCNN-R50 Object detection of cars
2 1 YOLOv3 Object detection of people
3 1 Inception Binary Classification of people, vehicles
4 6 ResNet50 Binary Classification of cars, buses, trucks
5 3 Tiny-YOLOv3 Object Detection of people
… … … …

Sample Workload



Executing Edge Workloads
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Edge Box 
GPU Memory
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Workloads are Outgrowing Edge GPU Memory
Wo
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30

Workload #
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 GB

8 GB

16 GB

1 Frame/Batch 4 Frame/Batch

Typical GPU 
Memory Offerings 
in Commercial 
Edge Boxes
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Time-Sharing of GPU Memory
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Edge Box Workload Models

Edge Box 
GPU Memory
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Skipped processing of 19-84% of 
frames and accuracy drops up to 43%

Implication: cannot keep up with frame rate and 
must drop frames due to SLA violations

Model Loading Time (ms) Run Time (ms)
YOLOv3 49.5 17.0
ResNet152 73.3 24.8
ResNet50 27.1 8.4
VGG16 72.2 2.1
Tiny YOLOv3 6.7 3.0

Repeatedly loading 
models into GPU 
memory is slow



How to reduce GPU 
memory bottlenecks in 
edge video analytics?Gemel

Opportunity: reduce memory overheads by 
exploiting redundancies across models

Observation: despite workload diversity, models 
often share many layer definitions
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g1
θ (x) g2

θ (x) g3
θ (x) g4

θ (x)

f2
θ (x) ≡ g3

θ (x)

θ2

θ1

θ3

θ4

θ5

θ6

θ7

θ8

θ9

θ10

θ11

Shared Layer Definitions Across Models
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f1
θ (x) f2

θ (x) f3
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Shared layer definitions appear in… 
Models from the Same Architecture Family

e.g., VGG16 & VGG19

63

~

~

~

~

Models from Different Architecture Families
e.g., VGG16 & AlexNet

~

~

~

Across 24 different architectures, 43% of all pairs of different models have shared layers



Idea: Find unified weights for shared layers
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Idea: Find unified weights for shared layers
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Edge Box 
GPU Memory
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Benefits
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Edge Box

Workload Models 
(with unified weights)
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θ11

Reduce per-workload 
memory usage by 17-86% 

Fewer Number of Swaps
θ1
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θ4

θ13
Remaining 
Swaps are Faster

θ1
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θ3

θ4

Process 29-61% more frames"



Model Merging

Jointly Retrain 
Models
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Systems For ML Case Study #2: ML Inference
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• Key insight: compress layers across models to reduce GPU memory overheads" 
• Paper & presentation available @ https://www.usenix.org/conference/nsdi23/

presentation/padmanabhan

https://www.usenix.org/conference/nsdi23/presentation/padmanabhan
https://www.usenix.org/conference/nsdi23/presentation/padmanabhan
https://www.usenix.org/conference/nsdi23/presentation/padmanabhan
https://www.usenix.org/conference/nsdi23/presentation/padmanabhan


Systems <-> Machine Learning
• Machine learning for Systems 

• Replacing system heuristics/control with ML algorithms 
• Examples: caching eviction policy, ABR algorithm 

• Systems for Machine Learning 
• Optimizing system level aspects to improve the machine learning pipeline (e.g., training, 

inference)  
• Examples: use pipeline parallelism to improve resource utilization for large-model training, 

use inter-model compression to reduce GPU memory overheads for video analytics 
inference jobs
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Systems <-> Machine Learning Resources
• MIT 6.887: Machine Learning for Systems (https://dsg.csail.mit.edu/6.887/assign.php) 
• Stanford CS329: Machine Learning Systems Design (https://stanford-cs329s.github.io/) 
• UofSC CSCE 585: Machine Learning Systems (https://pooyanjamshidi.github.io/mls/) 
• Princeton COS 598D: Systems and Machine Learning (https://www.cs.princeton.edu/

courses/archive/spring21/cos598D/general.html) 
• Cassie Kozyrkov's Making Friends with Machine Learning (https://www.youtube.com/

watch!v=1vkb7BCMQd0) 
• Chip Huyen's MLOps Guide (https://huyenchip.com/mlops/)

70

https://dsg.csail.mit.edu/6.887/assign.php
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https://www.youtube.com/watch?v=1vkb7BCMQd0
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https://www.youtube.com/watch?v=1vkb7BCMQd0
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