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Recall The Guard Model
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How do we enforce the guard model?
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Categories of Isolation Mechanisms
● Hardware-Enforced Isolation

○ Memory protection hardware
○ IO/MMU

● Language-based Isolation
○ Dynamic, using interpreters
○ Static, using type-checkers

● Software-Based Fault Isolation
○ Combination of static verification of binary and dynamic checks



Hardware Isolation



How does HW enable isolation?
● Typically, some mechanism to segment memory

○ Virtual memory
■ Sometimes multiple levels of virtualization

○ Segmentation
○ Memory protection hardware

● Operating systems generally use these to create process-like abstractions
○ Each process/service/etc has dedicated memory region for

■ Stack(s)
■ Heap
■ Global variables

○ Process is an isolated address space and an execution thread
○ Isolate memory and performance



Hardware Isolation, the good and bad
● Very general purpose

○ Assumes almost nothing about the program (just binary)

● Get performance isolation “for free”
● Normal execution is fast

○ Address translation implemented in hardware, using caches, so typically no overhead
○ E.g., a virtual machine runs compute-heavy workload nearly as fast as a native process

● But, relatively limited
○ Limited hardware resources for isolation

● And communication is expensive
○ Changing protection domains requires heavyweight context switching



Language-isolation



How do languages enable isolation?
● A type-system can restrict which resources a program has access to
● Itʼs about names

○ If a program cannot name a resource, there is no way for it to directly access it!

● Key idea: use language features that compartmentalize programs to isolate 
components
○ E.g. modules, namespaces, closures…
○ Components still share overall memory region (stack, heap, etc), and isolated at finer granularity

● Examples:
○ JavaScript in the browser
○ WebAssembly
○ eBPF
○ SQL queries



Language Isolation, the good and bad
● Virtually infinite isolation granularity

○ Language constructs are often “free”

● Communication can be very cheap
○ Just something like a function call

● Can get strong static guarantees
○ Programs wonʼt fail at runtime due to access violations

● Limited expressiveness
○ Gotta write your programs in JavaScript!

● Can be slower for normal execution
● Doesnʼt isolate performance “for free”



Software Fault Isolation



Software Fault Isowhat?
● Originally proposed by Wahby et al in 1993

○ Used in practice on-and-off over the years
○ Early versions of VMWare virtual machines, until x86 supported virtualization hardware
○ Native Client in Chrome, until WebAssembly superseded it

● Transforms object code to constraint the data and code it can access
● Best of both worlds?

○ “Arbitrary” binary code
○ Doesnʼt need hardware mechanisms, like virtual address spaces (sort of)

● Key idea:
○ Statically analyze the binary
○ Most code, easy to verify itʼs fine
○ When an instruction is ambiguous (e.g. an indirect jump, a data-dependent memory access)

■ Wrap instruction in a security monitor



SFI Isolation, the good and bad
● Pretty general purpose

○ Most binaries can work, but in practice might require special compiler or other restrictions

● Get performance isolation “for free”
○ Similar to HW isolation, all memory can be isolated, including stack

● Normal execution pretty fast, but depends on “unsafe” instructions
● In principle unlimited granularity

○ In practice relocating arbitrary binaries is hard

● Communication not free, but relatively cheap
○ No hardware context switch (donʼt need to flush the TLB)
○ Typically requires a jump table and dynamic checks on arguments, so a few extra instructions


