Securing Access to Resources
COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali

Recall The Guard Model

—
O O Request

> Guard
~—
Subject

Is subject allowed to
access resources?

How do we enforce the guard model?

Request

Isolation!

Categories of Isolation Mechanisms

e Hardware-Enforced Isolation
o Memory protection hardware
o |10/MMU
e Language-based Isolation
o Dynamic, using interpreters
o Static, using type-checkers
e Software-Based Fault Isolation
o Combination of static verification of binary and dynamic checks

Hardware Isolation

How does HW enable isolation?

e Typically, some mechanism to segment memory
o Virtual memory
m Sometimes multiple levels of virtualization
o Segmentation
o Memory protection hardware

e Operating systems generally use these to create process-like abstractions
o Each process/service/etc has dedicated memory region for
m Stack(s)
m Heap
m Globalvariables
o Processis anisolated address space and an execution thread
o Isolate memory and performance

Hardware Isolation, the good and bad

e Very general purpose

o Assumes almost nothing about the program (just binary)
e Get performance isolation “for free”
e Normal execution is fast

o Address translation implemented in hardware, using caches, so typically no overhead
o E.g.,avirtual machine runs compute-heavy workload nearly as fast as a native process

e But, relatively limited
o Limited hardware resources for isolation
e And communication is expensive
o Changing protection domains requires heavyweight context switching

Language-isolation

How do languages enable isolation?

e Atype-system can restrict which resources a program has access to

e |t'saboutnames
o If a program cannot name a resource, there is no way for it to directly access it!

e Keyidea: use language features that compartmentalize programs to isolate

components
o E.g. modules, namespaces, closures...
o Components still share overall memory region (stack, heap, etc), and isolated at finer granularity
e Examples:

o JavaScriptin the browser
o WebAssembly
o eBPF

o SQL queries

Language Isolation, the good and bad

e \Virtually infinite isolation granularity
o Language constructs are often “free”

e Communication can be very cheap
o Just something like a function call

e (an get strong static guarantees
o Programs won’t fail at runtime due to access violations

e Limited expressiveness
o Gotta write your programs in JavaScript!

e Can be slower for normal execution
e Doesn’tisolate performance “for free”

Software Fault Isolation

Software Fault Isowhat?

e Originally proposed by Wahby et al in 1993
o Used in practice on-and-off over the years
o Early versions of VMWare virtual machines, until x86 supported virtualization hardware
o Native Clientin Chrome, until WebAssembly superseded it

e Transforms object code to constraint the data and code it can access

e Best of both worlds?

o “Arbitrary” binary code
o Doesn’t need hardware mechanisms, like virtual address spaces (sort of)

e Keyidea:
o Statically analyze the binary
o Most code, easy to verify it’s fine
o When aninstruction is ambiguous (e.g. an indirect jump, a data-dependent memory access)
m Wrap instruction in a security monitor

SFl Isolation, the good and bad

Pretty general purpose
o Most binaries can work, but in practice might require special compiler or other restrictions
Get performance isolation “for free”
o Similar to HW isolation, all memory can be isolated, including stack
Normal execution pretty fast, but depends on “unsafe” instructions
In principle unlimited granularity
o In practice relocating arbitrary binaries is hard
Communication not free, but relatively cheap

o No hardware context switch (don’t need to flush the TLB)
o Typically requires a jump table and dynamic checks on arguments, so a few extra instructions

