
Securing Access to Resources
COS 316: Principles of Computer System Design

Amit Levy & Ravi Netravali



Recall The Guard Model

Guard

Object

Object

Object

Object

Request

Is subject allowed to 
access resources?

Subject



How do we enforce the guard model?

Guard

Object

Object

Object

Object

Request

Isolation!



Categories of Isolation Mechanisms
● Hardware-Enforced Isolation

○ Memory protection hardware
○ IO/MMU

● Language-based Isolation
○ Dynamic, using interpreters
○ Static, using type-checkers

● Software-Based Fault Isolation
○ Combination of static verification of binary and dynamic checks



Hardware Isolation



How does HW enable isolation?
● Typically, some mechanism to segment memory

○ Virtual memory
■ Sometimes multiple levels of virtualization

○ Segmentation
○ Memory protection hardware

● Operating systems generally use these to create process-like abstractions
○ Each process/service/etc has dedicated memory region for

■ Stack(s)
■ Heap
■ Global variables

○ Process is an isolated address space and an execution thread
○ Isolate memory and performance



Hardware Isolation, the good and bad
● Very general purpose

○ Assumes almost nothing about the program (just binary)

● Get performance isolation “for free”
● Normal execution is fast

○ Address translation implemented in hardware, using caches, so typically no overhead
○ E.g., a virtual machine runs compute-heavy workload nearly as fast as a native process

● But, relatively limited
○ Limited hardware resources for isolation

● And communication is expensive
○ Changing protection domains requires heavyweight context switching



Language-isolation



How do languages enable isolation?
● A type-system can restrict which resources a program has access to
● Itʼs about names

○ If a program cannot name a resource, there is no way for it to directly access it!

● Key idea: use language features that compartmentalize programs to isolate 
components
○ E.g. modules, namespaces, closures…
○ Components still share overall memory region (stack, heap, etc), and isolated at finer granularity

● Examples:
○ JavaScript in the browser
○ WebAssembly
○ eBPF
○ SQL queries



Language Isolation, the good and bad
● Virtually infinite isolation granularity

○ Language constructs are often “free”

● Communication can be very cheap
○ Just something like a function call

● Can get strong static guarantees
○ Programs wonʼt fail at runtime due to access violations

● Limited expressiveness
○ Gotta write your programs in JavaScript!

● Can be slower for normal execution
● Doesnʼt isolate performance “for free”



Software Fault Isolation



Software Fault Isowhat?
● Originally proposed by Wahby et al in 1993

○ Used in practice on-and-off over the years
○ Early versions of VMWare virtual machines, until x86 supported virtualization hardware
○ Native Client in Chrome, until WebAssembly superseded it

● Transforms object code to constraint the data and code it can access
● Best of both worlds?

○ “Arbitrary” binary code
○ Doesnʼt need hardware mechanisms, like virtual address spaces (sort of)

● Key idea:
○ Statically analyze the binary
○ Most code, easy to verify itʼs fine
○ When an instruction is ambiguous (e.g. an indirect jump, a data-dependent memory access)

■ Wrap instruction in a security monitor



SFI Isolation, the good and bad
● Pretty general purpose

○ Most binaries can work, but in practice might require special compiler or other restrictions

● Get performance isolation “for free”
○ Similar to HW isolation, all memory can be isolated, including stack

● Normal execution pretty fast, but depends on “unsafe” instructions
● In principle unlimited granularity

○ In practice relocating arbitrary binaries is hard

● Communication not free, but relatively cheap
○ No hardware context switch (donʼt need to flush the TLB)
○ Typically requires a jump table and dynamic checks on arguments, so a few extra instructions


