
COS 316
Naming in UNIX File Systems

We can view the UNIX file system as being composed of five layers of abstraction, each with1

its own naming scheme:

Layer Purpose

Block layer Organizes storage into fixed-sized blocks

File layer Organizes blocks into arbitrary length-files

Inode number layer Names files with unique numbers

Directory layer Provides human-readable names for files in
a directory

Absolute path name layer Provides a global namespace

Each layer in this hierarchy uses a naming scheme to abstract details of the lower layers to the
layer above it, providing portability across storage media, the ability to manage storage
devices without user cooperation, and a balance between machine-useful naming and human
readable names.

We can understand the naming scheme for each layer using the properties of naming
schemes we discussed in previous lectures:

1. Names: what is the format of names and what space are they drawn from
2. Values: what values to names represent
3. Allocation: how do we allocate new names and values
4. Lookup: how do we find a value given its name

1 The Saltzer book describes two additional layers: the directory layer is described as two layers (the “File name
layer” and “Path name layer,” and an additional layer called the “Symbolic link layer,” which we just elide here).

The Block Layer
Storage media use a variety of different mechanisms to organize storage. Hard disks use
spinning platters and moving arms to address data, which is organized into cylinders on each
platter. Tape organizes data as a single contiguous magnetic stripe. SSDs are formed from
arrays of NAND flash that organize data into planes for parallelism, and further into dies,
blocks and pages.

The role of the block layer is to expose these diverse media through a single abstraction that
preserves important performance characteristics common to those media.

In particular, the block layer divides the storage device into fixed-sized “blocks” of contiguous
memory. Block sizes vary by device, but 4KB blocks are typical today. Each block is numbered
with a “block number” starting at 0.

This enshrines two common properties of many storage devices. First, that storage may not
be completely contiguous (e.g., hard disks are organized into cylinders and SSDs may have
internal sections of NAND flash which is invalid). Second, while storage devices generally
allow for random access, devices generally perform best when accessed in relatively large
contiguous chunks.

Block numbers allow higher layers to reference chunks of storage without knowledge of their
specific location or their physical organization. The relatively large size of blocks ensures
higher layers use the underlying hardware in such a way that takes advantage of typical
performance tradeoffs.

1. Names
The block layer uses positive integers, starting from 0, to name blocks. The largest
block number is the size of the total size of the device in bytes, divided by the
blocksize. For example, a hard disk with a capacity of 4GB and a 4KB block size will
have 4GB / 4KB = 1048576 blocks.

2. Values
Each block is a block-sized contiguous array of persistent memory, often 4KB.

3. Allocation
Each potential block has a pre-assigned block number based on its position in the
storage device. But in order to allocate a new block and supply its number we need to
keep track of free blocks.

UNIX file systems use a special block (usually block number 0) called a “super block” to
store metadata, which includes a data structure to keep track of free blocks.

Early file-system implementations used a linked list of free blocks with a head pointer
stored in the super block. However, this can make it hard to find contiguous blocks
(which is desirable for large files). So many file systems keep a bitmap marking free
blocks in the super block or some number of subsequent blocks.

To find a free block, we simply search the free block map for a zero-bit. The index of
the zero-bit corresponds to the free block’s number. We mark this block occupied (by
flipping the bit) and return the number.

4. Lookup
Mapping a block number to a block is device specific, and depends on how we lay out
storage on the device. However, given a block name i we use the mapping of blocks to
return the ith block.

The File Layer
Blocks give us a way to name fixed-sized chunks of persistent storage. But files have arbitrary
size, include metadata (permissions, creation and modification times, owner, etc), and may
grow or shrink over time.

In particular, files often contain data that spans multiple, potentially non-sequential, blocks.
We need some way to find all the blocks associated with a particular file and order them.

The file layer accomplishes this using an object called an “inode” (probably short for “index”
node, but the origin is not entirely clear). An inode includes file metadata (size, type,
permissions, ownership, etc) as well as data structure storing an ordered list of block numbers
for blocks that store the file contents.

1. Names
We name files using an inode struct. Different file systems use different structures for
the inode, but a reasonable model looks as follows:

struct inode {
int32_t filesize
… other metadata…
int32_t block_numbers[N]

}

The inode structs above includes metadata and stores an array of block numbers
inline, up to a fixed maximum N limited by the maximum size of the inode itself (since
the array needs to fit inside the inode struct).

http://lkml.iu.edu/hypermail/linux/kernel/0207.2/1182.html

For example, it's common to store one inode in one block, such that the inode struct is
at most the size of a block. In our example representation, with 4KB blocks, this would
limit the total size of a file to under 4MB: an inode itself can be no larger than 4KB,
meaning the block_numbers array is at most 4KB (actually smaller since there must be
room for metadata as well. Since each element of the array is 4 bytes (a 32-bit integer),
we can have at most 4096 / 4 = 1024 entries. Each entry, in turn, points to a block,
which is 4KB. So each file can have at most 1024 * 4096 bytes = 4MB.

Exercise: How might we encode files larger than 4MB? How can we avoid a limit on the
file size?

2. Values
Values in the file layer are… you guessed it... files: a linear array of bytes, along with
file metadata.

3. Allocation
Since we use blocks to store inodes, a reasonable allocation scheme would be to reuse
the block allocation mechanism from the block layer.

Some file systems tailored for specific kinds of storage media and workloads may have
other allocation techniques. For example, it’s common to cluster inodes together in
order to avoid disk seeks when reading metadata of files from a single directory (e.g.,
when running ls -l).

4. Lookup
To lookup file data from an inode, we traverse the block_numbers data structure to
find the block associated with the file offset we want to read or write:

def (inode *inode) offset_to_block(int offset) returns block:
block_idx = offset / BLOCKSIZE
block_num = inode.block_numbers[block_idx]
return device.block_number_to_block[block_num]

The Inode Number Layer
A file isn’t particularly useful if we can’t get to it. The lowest level of naming for a file in UNIX
uses an “inode number”, simply a non-negative integer that uniquely identifies the inode
struct for the file. Inode numbers are primarily used by the directory layer (see next section),
but you can view your files’ inode numbers using ls -i.

1. Names
Inode numbers are non-negative integers (strikingly similar to block numbers) that
uniquely identify an inode.

2. Values
Values in this layer are the inode structs from the previous section.

3. Allocation
We can reuse block allocation from the block layer to get blocks for new inodes and
simply use the block number as the inode number.

As discussed in the previous section, some file systems use special allocation schemes
for inodes in order to cluster related inodes together on disk.

4. Lookup
If we’re reusing the block allocation scheme for inode allocation, lookup is similar: we
use the inode number as a block number to get the block on which the inode is stored,
and read the block as an inode struct.

The Directory Layer
Numbered inodes are great for software and hardware to reference individual files, but they
are not particularly useful for humans. Moreover, naming specific files doesn’t help users
organize or discover files.

The directory layer helps us solve both of these problems by grouping files into collections
called “directories” and giving them human readable names. Each directory maps human
readable file-names---more or less arbitrary ASCII strings---into inode numbers corresponding
to files.

Abstractly, a directory is just a list of directory entries, each with a filename to an inode
number:

struct dirent {
int32_t inode_num
char filename[MAX_FILENAME_LEN]

}

typedef directory dirent[MAX_DIR_SIZE]

UNIX file systems store these lists of directory entries as special file types, reusing the inode
and file layers. One consequence of this is that filenames inside directories can themselves
map to sub-directories, giving us a familiar hierarchy of directories for paths of the form:
path/to/file.txt

1. Names
In principle, a file name can be any ASCII string. In practice, file systems often limit the
length of the filename or the characters it may use. In other cases, such as Apple’s
HFS+, file names are case-insensitive, so “FILE.txt” and “file.txt” are considered the
same. Finally, many modern file systems support unicode file names, rather than just
ASCII.

2. Values
The directory layer maps file names to inode numbers, described in the previous layer.

3. Allocation
UNIX file systems store directories as a special file type. As a result, we create a new
directory by allocating an inode and inode number, as well as blocks to store the
directory entries.

To allocate a new mapping between a filename in the directory to an inode number,
we simply add an entry in the directory’s list. Of course, the file system must check for
duplicates that already exist in the list.

4. Lookup
Given a filename inside a directory, we search the list of entries for one with a
matching filename field and return the corresponding inode number field.

Give a relative path, we can use this algorithm recursively to resolve the entire path,
traversing subdirectories along the way.

