
Let's get Go-ing

An introduction to Go
programming for COS 316

Today's Agenda
Just enough Go to
get started on
Assignment 1.

● What is Go?

● Variables,
loops, and
functions in Go

● Navigating the
standard
library
documentation

Why learn Go?

Why learn Go?
Go is a programming language
designed for large, distributed
systems.

Why learn Go?
Go is a programming language
designed for large, distributed
systems.

Widely used in industry.

Why learn Go?
Go is a programming language
designed for large, distributed
systems.

Widely used in industry.

Features native, efficient
concurrency primitives (i.e.,
goroutines and channels).

Okay, let's write our first program

Variables
https://go.dev/play

package main

func main() {

}

Variables

package main

func main() {
 var a int = 3
}

Variables

package main

func main() {
 var a int = 3
}

Variables Variable types come
after variable names

package main

func main() {
 var a int = 3
 var b = 2
}

Variables Variable types come
after variable names

package main

func main() {
 var a int = 3
 var b = 2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

Okay, looks good!
Let's run our code.

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

Okay, looks good!
Let's run our code.

> go run main.go

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

Shorthand for var x =
is x :=

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

Compiler says nope! X

./main.go:4:7: a declared and not used

./main.go:5:7: b declared and not used

./main.go:6:3: c declared and not used

./main.go:7:7: d declared and not used

./main.go:8:7: e declared and not used

./main.go:8:10: f declared and not used

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

Go prevents you from
compiling code with
unused variables, so
let's print them out

package main

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

package main

import "fmt"

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

package main

import "fmt"

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2

 fmt.Println(a, b, c)
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

package main

import "fmt"

func main() {
 var a int = 3
 var b = 2
 c := 1
 var d int
 var e, f int = -1, -2

 fmt.Println(a, b, c)
 fmt.Println(d, e, f)
}

Variables Variable types come
after variable names

Variable types can be
omitted and inferred

A shorthand for
'var c =' is 'c :='

Can choose to accept
default value (i.e., 0)

Can declare and init.
multiple vars in 1 line

Let's see this in action!

Play time!
"Go" to

go.dev/play and try
out some variable
declarations.

https://go.dev/play

Play time!
"Go" to

go.dev/play and try
out some variable
declarations.

Here are some ideas.

https://go.dev/play

1. Can you declare
multiple variables
with different types
on the same line?

Play time!
"Go" to

go.dev/play and try
out some variable
declarations.

Here are some ideas.

https://go.dev/play

1. Can you declare
multiple variables
with different types
on the same line?

2. Can you infer the
types of variables
when declaring more
than one on a line?

Play time!
"Go" to

go.dev/play and try
out some variable
declarations.

Here are some ideas.

https://go.dev/play

1. Can you declare
multiple variables
with different types
on the same line?

2. Can you infer the
types of variables
when declaring more
than one on a line?

3. What does
fmt.Println() print
when it's given
multiple arguments?

Play time!
"Go" to

go.dev/play and try
out some variable
declarations.

Here are some ideas.

https://go.dev/play

Loops

package main

func main() {

}

Loops

package main

import "fmt"

func main() {
 for i := 1; i <= 3; i++ {
 fmt.Println(i)
 }
}

Loops

package main

import "fmt"

func main() {
 for i := 1; i <= 3; i++ {
 fmt.Println(i)
 }
}

'for' loops work
like in Java/C, but
don't require ()

Must use { }, even
for 1-line loops

Loops

package main

import "fmt"

func main() {
 for i := 1; i <= 3; i++ {
 fmt.Println(i)
 }
 i := 4
 for i <= 10 {
 fmt.Println(i)
 i++
 }
}

'for' loops work
like in Java/C, but
don't require ()

Must use { }, even
for 1-line loops

Loops

package main

import "fmt"

func main() {
 for i := 1; i <= 3; i++ {
 fmt.Println(i)
 }
 i := 4
 for i <= 10 {
 fmt.Println(i)
 i++
 }
}

'for' loops work
like in Java/C, but
don't require ()

Must use { }, even
for 1-line loops

No such thing as
'while' loops in Go

Loops

package main

import "fmt"

func main() {
 for i := 1; i <= 3; i++ {
 fmt.Println(i)
 }
 i := 4
 for i <= 10 {
 fmt.Println(i)
 i++
 }
 for {
 fmt.Println("done!")
 break
 }
}

'for' loops work
like in Java/C, but
don't require ()

Must use { }, even
for 1-line loops

No such thing as
'while' loops in Go

Loops

package main

import "fmt"

func main() {
 for i := 1; i <= 3; i++ {
 fmt.Println(i)
 }
 i := 4
 for i <= 10 {
 fmt.Println(i)
 i++
 }
 for {
 fmt.Println("done!")
 break
 }
}

'for' loops work
like in Java/C, but
don't require ()

Must use { }, even
for 1-line loops

No such thing as
'while' loops in Go

Can use 'break'
and 'continue'

Loops

Let's try it ourselves

Let's Get
LoopY
Navigate to

go.dev/play and
write a few Go

loops.

https://go.dev/play

1. Does the scoping of
the index variable in
a Go 'for' loop extend
beyond the loop? Let's Get

LoopY
Navigate to

go.dev/play and
write a few Go

loops.

https://go.dev/play

1. Does the scoping of
the index variable in
a Go 'for' loop extend
beyond the loop?

2. Can you skip the
conditional part in a
'for' loop but still
use the init and post
statements?

Let's Get
LoopY
Navigate to

go.dev/play and
write a few Go

loops.

https://go.dev/play

1. Does the scoping of
the index variable in
a Go 'for' loop extend
beyond the loop?

2. Can you skip the
conditional part in a
'for' loop but still
use the init and post
statements?

3. Does Go support
'labeled breaks' that
let you choose which
loop to leave?

Let's Get
LoopY
Navigate to

go.dev/play and
write a few Go

loops.

https://go.dev/play

Functions

func f(a int, b int) int {
 return a + b
}

Functions

func f(a int, b int) int {
 return a + b
}

A function's return
type is listed after
its args

Functions

func f(a int, b int) int {
 return a + b
}

func g(a, b int) int {
 return a * b
}

A function's return
type is listed after
its args

Functions

func f(a int, b int) int {
 return a + b
}

func g(a, b int) int {
 return a * b
}

A function's return
type is listed after
its args

If args are same
type, can specify
type once at end

Functions

func f(a int, b int) int {
 return a + b
}

func g(a, b int) int {
 return a * b
}

func h(a, b int) (int,int) {
 return f(a, b), g(a, b)
}

A function's return
type is listed after
its args

If args are same
type, can specify
type once at end

Functions

func f(a int, b int) int {
 return a + b
}

func g(a, b int) int {
 return a * b
}

func h(a, b int) (int,int) {
 return f(a, b), g(a, b)
}

A function's return
type is listed after
its args

If args are same
type, can specify
type once at end

Functions can
return more than
one result

Functions

func f(a int, b int) int {
 return a + b
}

func g(a, b int) int {
 return a * b
}

func h(a, b int) (int,int) {
 return f(a, b), g(a, b)
}

func main() {
 a, b := h(1, 2)
 _, c := h(3, 4)
}

A function's return
type is listed after
its args

If args are same
type, can specify
type once at end

Functions can
return more than
one result

Functions

func f(a int, b int) int {
 return a + b
}

func g(a, b int) int {
 return a * b
}

func h(a, b int) (int,int) {
 return f(a, b), g(a, b)
}

func main() {
 a, b := h(1, 2)
 _, c := h(3, 4)
}

A function's return
type is listed after
its args

If args are same
type, can specify
type once at end

Functions can
return more than
one result

'_' throws away a
return value

Functions

Last programming exercise!

1. Does Go allow you to
use '_' to ignore all
the return values of a
function?

2. Can you use recursion
with a function that
returns multiple
values?

3. Does Go require a
return value for each
function?

Go
Functions
Let's get back to
go.dev/play and
write a few

programs using
functions in Go.

http://go.dev/play

Go Standard Library

Go Standard Library
All Go programs have access to
to a massive standard library of
packages. (See pkg.go.dev/std)

http://pkg.go.dev/std

Go Standard Library
All Go programs have access to
to a massive standard library of
packages. (See pkg.go.dev/std)

This collection of officially
supported packages is one of the
reasons Go is a useful language
for systems programmers.

http://pkg.go.dev/std

Reading The Documentation

Reading The Documentation
Navigating the documentation is
hard.

Reading The Documentation
Navigating the documentation is
hard.

There's a lot of it and you'll
be learning about the language
as you read it.

Reading The Documentation
Navigating the documentation is
hard.

There's a lot of it and you'll
be learning about the language
as you read it.

Expect to spend some time
pouring over it.

External Sources

External Sources
Googling is allowed, even
encouraged, in this course. You
may use any online resource.

External Sources
Googling is allowed, even
encouraged, in this course. You
may use any online resource.

If you base a significant
portion of your code on it, cite
it in a comment in your code.

External Sources
Googling is allowed, even
encouraged, in this course. You
may use any online resource.

If you base a significant
portion of your code on it, cite
it in a comment in your code.

Search for “golang” instead.

Let's see the docs

1. Find some
“interesting” packages

2. Can you experiment
using the provided
examples?

Doc Hunt
Navigate to
pkg.go.dev

Use
go.dev/play

https://pkg.go.dev
http://go.dev/play

Questions?
Please don't hesitate to ask!

Additional Resources
● go.dev

● go.dev/play

● gobyexample.com

● "Learn Go Programming"
(7 hour YouTube tutorial)

https://go.dev
http://go.dev/play
https://gobyexample.com
https://www.youtube.com/watch?v=YS4e4q9oBaU
https://www.youtube.com/watch?v=YS4e4q9oBaU

Assignment 0
● Ungraded!

● Set up common development
environment

○ Go, Git, etc.

○ Necessary for precepts and
assignments

GIT & Go
● Command line Git

● Desktop Git

● Git Tutorial

● Git Cheatsheet

● Download Go

https://git-scm.com/downloads
https://desktop.github.com/
https://git-scm.com/book/en/v2
https://github.github.com/training-kit/downloads/github-git-cheat-sheet.pdf
https://golang.org/dl/

