COS 316 Precept:
Socket Programming

Abstractions

1
O
s

How can two different computers exchange data?

o Complex process, involves many different components, links, etc.
o Computers may have different hardware, operating systems, ...

Abstractions avoid us having to worry about this

o A way of reducing implementation complexity into simpler concepts
o Focus on their abstraction paradigm

Many examples for abstractions in modern systems
o Files, Terminals (TTYSs), ...

Today: sockets!

What are sockets? And connections?

e Connection

o Many different definitions!
o In this context: an established method to communicate between

a process on one host (A) 'Qd/' a process on another host (B)

o A communication channel
o An abstraction; in this case spanning multiple (physical) systems

e Socket
o An endpoint of a given connection
m Connections are established between two sockets
o Just another abstraction! The system-local abstraction of a connection

Client — Server Communication

e A paradigm describing how a connection is initiated between two sockets

Client Server

e Actively initiates the connection e Passively listens for and accepts

: « : . connections
e Typically “sometimes on” (e.g., web

browser on your phone / laptop) e Typically “always on” (e.g., web server for
google.com in some data center)

e Needs to dial the server

— thus requires its address! e Must be reachable under some address

Recall: a connection is established between two processes on some hosts

Thus, an address is composed of a host identifier (IP address) and a process identifier (port number)

http://google.com

Stream Sockets (TCP): Connection-oriented

Server
socket() m4— Create a socket
Bind the socket Listening socket
bind() (assign to a given host Bound to just the local
and port identifier) host & port address
listen() Listen for client

(Wait for incoming connections)

* estab\'\sh connection

Client

Create a socket

\

— Connect to server

l

data (reC\U\esﬂ — Send data

accept() Accept connection <

read() [—Pp Receive Data <
Connected socket

erte() Bound to both local Send data I

and remote host &
port address

Receive data

socket()

connect()

write()

read()

Datagram Sockets (UDP): Connectionless

Server .
Client

socket() Create a socket

* Create a socket socket()
bind() Bind the socket *

Bind the socket bind()
l data *
(request) — Send data sendto()

recvfrom() Receive data

l data
sendto() Send data —_(reply)

—> Receive data recvfrom()

Assignment 1

e \Write a pair of programs implementing the server — client

connection-oriented socket paradigm
o Using “stream sockets” (TCP)

e Two files you'll modify: client.go and server.go

e Having a client send data to a server
o And let the server print this data

e This precept: minimal client — server example
o Available at https://github.com/cos316/precepts/tree/main/precept?

e This precept does not address all requirements of the assignment!
Purpose is to give you an idea of how to get started.

https://github.com/cos316/precepts/tree/main/precept2

Client — Milestone 1: Connect to a Server

e \We'll need to retrieve the server address
from the command line
... and connect to it

e go’s net.Dial function looks promising!
o Read its documentation to figure out the
expected server address format

e Read the server address from the

command line arguments
o You can find those in 0s.Args in go!

o The first argument (os.Args[0]) is always the
executable name

go’s net.Dial()

Client

Create a socket socket()

\

Connect to server connect()
|

l

returns a Conn object

https://pkg.go.dev/net#Dial
https://pkg.go.dev/os#pkg-variables

Client — Milestone 2: Write Data & Close Connection

e Client contains code for reading a message from the standard input
o Message is placed in the message buffer
o bytes_read indicates the number of bytes that have been read into the buffer
o go supports “sub-slicing an array” like so: my_array[:number_of_elements]

conn

e Use conn.Write to write some bytes to (established socket)
an established connection l

e Use conn.Close to close a connection

data Send data Write()
o This informs the opposite end socket that the / i

connection is no longer established

o Both sides can close a connection! Ay Close connection Close()

https://pkg.go.dev/os#Stdin

Server — Milestone 1: Create a Listening Socket

e To accept connections, our server must

create a listeninqg socket

o The net.Listen function does that!
o Returns a Listener, which owns a socket

e net.Listen takes a listen address

o Host- and process-address of server (IP & port)

o A server can have multiple host addresses!
Listening on “localhost” or “127.0.0.1" only
allows local connections.

e Use fmt.Sprintf to combine the
host-address and port number

go’s net.Listen()

Server

socket() Create a socket

Y

(]
V

Bind the socket

bind() (assign to a give_n.host
and port identifier)

\

Listen for client

listen
0 (Wait for incoming connections)

v

Returns a net.Listener

https://pkg.go.dev/net#Listen

Server — Milestone 2: Accept a Connection & Read Data

e Alistener can accept an incoming net.Listener
client connection with the Accept method o egaplishing
Client € ction
o returns a net.Conn, same as on Client! A}m\e/
. Accept() Accepta connection
e net.Conn can receive data through the blocks until a
client connects!
Read () methOd go’s net.Conn
o Takes a buffer as argument (owns a connecied

socket underneath)

e Accept a client connection

message

Read() Receive Data <

Server — Milestone 3: Handling a Client Close()

e Both sides can close a connection
o What if that happens during a Conn.Read()?

go’s net.Conn
(owns a connected

e Conn.Read() returns an EOF error! socket underneath)
o “End of file” l
: close
e Check for this error. Read () Receive Data, <—

If it occurs, close the connection.

o err may be setto nil — check for this first!

o err provides the Error () method, which returns
error codes as strings

EOF

Server — Milestone 4: Receiving Data

e Now, let’s actually print the client’'s message!

o Similar to reading on the client side
go’s net.Conn

o Read() reads to a buffer, returns the number of bytes (owns a connected
o Use fmt.Printin to print a subset of the buffer’s contents l socket underneath)
message
Read(buffer) Receive Data <

N

bytes_read err (== nil)

Tips and Common gotcha

® fmt.Sprintf could be handy

® Don't print the entire buffer
® Convert bytes to string when print
® C(Client needs to close() at end of connection

® EOF is not a character, it's a type of error

