
COS 316 Precept:
Socket Programming

Abstractions

● How can two different computers exchange data?
○ Complex process, involves many different components, links, etc.
○ Computers may have different hardware, operating systems, …

● Abstractions avoid us having to worry about this
○ A way of reducing implementation complexity into simpler concepts
○ Focus on their abstraction paradigm

● Many examples for abstractions in modern systems
○ Files, Terminals (TTYs), …

● Today: sockets!

What are sockets? And connections?

● Connection
○ Many different definitions!
○ In this context: an established method to communicate between

 a process on one host (A) and a process on another host (B)
○ A communication channel
○ An abstraction; in this case spanning multiple (physical) systems

● Socket
○ An endpoint of a given connection

■ Connections are established between two sockets
○ Just another abstraction! The system-local abstraction of a connection

Client – Server Communication

Client

● Actively initiates the connection

● Typically “sometimes on” (e.g., web
browser on your phone / laptop)

● Needs to dial the server
→ thus requires its address!

Server

● Passively listens for and accepts
connections

● Typically “always on” (e.g., web server for
google.com in some data center)

● Must be reachable under some address

● A paradigm describing how a connection is initiated between two sockets

Recall: a connection is established between two processes on some hosts

Thus, an address is composed of a host identifier (IP address) and a process identifier (port number)

http://google.com

Stream Sockets (TCP): Connection-oriented

5

Create a socket

Bind the socket
(assign to a given host

and port identifier)

Listen for client
(Wait for incoming connections)

Accept connection

Receive Data

Send data

Server

Client

Create a socket

Connect to server

Send data

establish connection

data (request)

Receive data

data (reply)

socket()

bind()

listen()

accept()

read()

write()

socket()

connect()

write()

read()

Listening socket

Bound to just the local
host & port address

Connected socket

Bound to both local
and remote host &

port address

Datagram Sockets (UDP): Connectionless

6

Create a socket

Bind the socket

Receive data

Send data

Server
Client

Create a socket

Bind the socket

Send data
data
(request)

Receive data

data
(reply)

socket()

bind()

recvfrom()

sendto()

socket()

bind()

sendto()

recvfrom()

Assignment 1
● Write a pair of programs implementing the server – client

connection-oriented socket paradigm
○ Using “stream sockets” (TCP)

● Two files you’ll modify: client.go and server.go

● Having a client send data to a server
○ And let the server print this data

● This precept: minimal client – server example
○ Available at https://github.com/cos316/precepts/tree/main/precept2

● This precept does not address all requirements of the assignment!
Purpose is to give you an idea of how to get started.

https://github.com/cos316/precepts/tree/main/precept2

Client – Milestone 1: Connect to a Server

● We’ll need to retrieve the server address
from the command line
… and connect to it

● go’s net.Dial function looks promising!
○ Read its documentation to figure out the

expected server address format

● Read the server address from the
command line arguments
○ You can find those in os.Args in go!
○ The first argument (os.Args[0]) is always the

executable name

Client

Create a socket

Connect to server

socket()

connect()

returns a Conn object

go
’s

 n
et
.D
ia

l(
)

https://pkg.go.dev/net#Dial
https://pkg.go.dev/os#pkg-variables

Client – Milestone 2: Write Data & Close Connection

● Client contains code for reading a message from the standard input
○ Message is placed in the message buffer
○ bytes_read indicates the number of bytes that have been read into the buffer
○ go supports “sub-slicing an array” like so: my_array[:number_of_elements]

● Use conn.Write to write some bytes to
an established connection

● Use conn.Close to close a connection
○ This informs the opposite end socket that the

connection is no longer established
○ Both sides can close a connection!

Send datadata Write()

Close connection Close()close

conn
(established socket)

https://pkg.go.dev/os#Stdin

Server – Milestone 1: Create a Listening Socket

● To accept connections, our server must
create a listening socket
○ The net.Listen function does that!
○ Returns a Listener, which owns a socket

● net.Listen takes a listen address
○ Host- and process-address of server (IP & port)
○ A server can have multiple host addresses!

Listening on “localhost” or “127.0.0.1” only
allows local connections.

● Use fmt.Sprintf to combine the
host-address and port number

Create a socket

Bind the socket
(assign to a given host

and port identifier)

Listen for client
(Wait for incoming connections)

Server

socket()

bind()

listen()

go
’s

 n
et
.L
is
te

n(
)

Returns a net.Listener

https://pkg.go.dev/net#Listen

Server – Milestone 2: Accept a Connection & Read Data

● A Listener can accept an incoming
client connection with the Accept method
○ returns a net.Conn, same as on Client!

● net.Conn can receive data through the
Read() method
○ Takes a buffer as argument

● Accept a client connection

net.Listener

Accept a connectionAccept()
blocks until a

client connects!

Client establishing

connection

go’s net.Conn
(owns a connected
socket underneath)

Receive Data
message

Read()

Server – Milestone 3: Handling a Client Close()

● Both sides can close a connection
○ What if that happens during a Conn.Read()?

● Conn.Read() returns an EOF error!
○ “End of file”

● Check for this error.
If it occurs, close the connection.
○ err may be set to nil – check for this first!
○ err provides the Error() method, which returns

error codes as strings

go’s net.Conn
(owns a connected
socket underneath)

Receive Data
close

Read()

EOF

Server – Milestone 4: Receiving Data

● Now, let’s actually print the client’s message!
○ Similar to reading on the client side
○ Read() reads to a buffer, returns the number of bytes
○ Use fmt.Println to print a subset of the buffer’s contents

go’s net.Conn
(owns a connected
socket underneath)

Receive Data
message

Read(buffer)

err (== nil)bytes_read

Tips and Common gotcha
● fmt.Sprintf could be handy

● Don’t print the entire buffer

● Convert bytes to string when print

● Client needs to close() at end of connection

● EOF is not a character, it’s a type of error

