
COS 316 Precept:
Socket Programming



Abstractions

● How can two different computers exchange data?
○ Complex process, involves many different components, links, etc.
○ Computers may have different hardware, operating systems, …

● Abstractions avoid us having to worry about this
○ A way of reducing implementation complexity into simpler concepts
○ Focus on their abstraction paradigm

● Many examples for abstractions in modern systems
○  Files, Terminals (TTYs), …

● Today: sockets!



What are sockets? And connections?

● Connection
○ Many different definitions!
○ In this context: an established method to communicate between

          a process on one host (A)        and        a process on another host (B)
○ A communication channel
○ An abstraction; in this case spanning multiple (physical) systems

● Socket
○ An endpoint of a given connection

■ Connections are established between two sockets
○ Just another abstraction! The system-local abstraction of a connection



Client – Server Communication

Client

● Actively initiates the connection

● Typically “sometimes on” (e.g., web 
browser on your phone / laptop)

● Needs to dial the server
→ thus requires its address!

Server

● Passively listens for and accepts 
connections

● Typically “always on” (e.g., web server for 
google.com in some data center)

● Must be reachable under some address

● A paradigm describing how a connection is initiated between two sockets

Recall: a connection is established between two processes on some hosts

Thus, an address is composed of a host identifier (IP address) and a process identifier (port number)

http://google.com


Stream Sockets (TCP): Connection-oriented 
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Datagram Sockets (UDP): Connectionless
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Assignment 1
● Write a pair of programs implementing the server – client 

connection-oriented socket paradigm
○ Using “stream sockets” (TCP)

● Two files you’ll modify: client.go and server.go

● Having a client send data to a server
○ And let the server print this data

● This precept: minimal client – server example
○ Available at https://github.com/cos316/precepts/tree/main/precept2

● This precept does not address all requirements of the assignment!
Purpose is to give you an idea of how to get started.

https://github.com/cos316/precepts/tree/main/precept2


Client – Milestone 1: Connect to a Server

● We’ll need to retrieve the server address 
from the command line
… and connect to it

● go’s net.Dial function looks promising!
○ Read its documentation to figure out the 

expected server address format

● Read the server address from the 
command line arguments
○ You can find those in os.Args in go!
○ The first argument (os.Args[0]) is always the 

executable name

Client

Create a socket

Connect to server
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https://pkg.go.dev/net#Dial
https://pkg.go.dev/os#pkg-variables


Client – Milestone 2: Write Data & Close Connection

● Client contains code for reading a message from the standard input
○ Message is placed in the message buffer
○ bytes_read indicates the number of bytes that have been read into the buffer
○ go supports “sub-slicing an array” like so: my_array[:number_of_elements]

● Use conn.Write to write some bytes to 
an established connection

● Use conn.Close to close a connection
○ This informs the opposite end socket that the 

connection is no longer established
○ Both sides can close a connection!

Send datadata Write()

Close connection Close()close

conn
(established socket)

https://pkg.go.dev/os#Stdin


Server – Milestone 1: Create a Listening Socket

● To accept connections, our server must 
create a listening socket
○ The net.Listen function does that!
○ Returns a Listener, which owns a socket

● net.Listen takes a listen address
○ Host- and process-address of server (IP & port)
○ A server can have multiple host addresses!

Listening on “localhost” or “127.0.0.1” only 
allows local connections.

● Use fmt.Sprintf to combine the 
host-address and port number

Create a socket

Bind the socket 
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Returns a net.Listener

https://pkg.go.dev/net#Listen


Server – Milestone 2: Accept a Connection & Read Data

● A Listener can accept an incoming 
client connection with the Accept method
○ returns a net.Conn, same as on Client!

● net.Conn can receive data through the 
Read() method
○ Takes a buffer as argument

● Accept a client connection

net.Listener

Accept a connectionAccept()
blocks until a 

client connects!

Client establishing 

connection

go’s net.Conn
(owns a connected 
socket underneath)

Receive Data
message

Read()



Server – Milestone 3: Handling a Client Close()

● Both sides can close a connection
○ What if that happens during a Conn.Read()?

● Conn.Read() returns an EOF error!
○ “End of file”

● Check for this error.
If it occurs, close the connection.
○ err may be set to nil – check for this first!
○ err provides the Error() method, which returns 

error codes as strings

go’s net.Conn
(owns a connected 
socket underneath)

Receive Data
close

Read()

EOF



Server – Milestone 4: Receiving Data

● Now, let’s actually print the client’s message!
○ Similar to reading on the client side
○ Read() reads to a buffer, returns the number of bytes
○ Use fmt.Println to print a subset of the buffer’s contents

go’s net.Conn
(owns a connected 
socket underneath)

Receive Data
message

Read(buffer)

err (== nil)bytes_read



Tips and Common gotcha
● fmt.Sprintf could be handy

● Don’t print the entire buffer

● Convert bytes to string when print

● Client needs to close() at end of connection

● EOF is not a character, it’s a type of error


