COS 316 Precept #6: *Cache Eviction (Replacement)*

git clone <u>https://github.com/cos316/precepts</u> Navigate to *precept7* directory

Overview of Web Caching

- Basic idea:
 - Bring objects "closer" to clients
- Three primary features:
 - Reduce network bandwidth
 - Reduce client-perceived delays
 - Reduce load on server
- Cache Replacement Strategy
 - When a cache becomes full, which object should be evicted/replaced?

Cache Eviction Algorithms

- High level
 - Client requests a new object
 - If object is in cache, return the object
 - If object is not in cache:
 - Get object from server/provider and return the object
 - Cache full:
 - Identify an object in cache to evict
 - Evict the object in the cache
 - Replace with new object (insert new object)
 - Cache not full:
 - Admit the new object to the cache

Cache Eviction Algorithms

- Least recently used (LRU): Evict the object from the cache whose last request is the oldest
- First-in, First-out (FIFO): Evict the object from the cache that has been in the cache the longest
- Many others...

LRU

t

LRU

t

FIFO

id: 8 size: 10 request: : admit: : Current time: 16:00	id: 8 size: 10 request:: admit:: 16:00	
id: 1 size: 3 request: 15:01 admit: 12:01 id: 3 size: 10 request: 13:45	id: 1 size: 3 request: 15:01 admit: 12:01 id: 3 size: 10 request: 13:45	id: 1 size: 3 request: 15:01 admit: 12:01 id: 3 size: 10 request: 13:45 admit: 13:45
id: 6 size: 2 request: 13:00 admit: 11:00	id: 6 size: 2 request: 13:00 admit: 11:00 id: 4 size: 5 request: 11:53 admit: 11:33	id: 8 size: 10 request: 16:00 admit: 16:00
id: 11 size: 8 request: 11:30 admit: 11:30 Cache capacity = 55 Cache cize = 45	id: 11 size: 8 request: 11:30 admit: 11:30 Cache capacity = 55 Cache cize = 45	id: 11 size: 8 request: 11:30 admit: 11:30 Cache capacity = 55 Cache cize = 52

Experiments

- > cd <Precepts repo> #<u>https://github.com/cos316/Precepts</u>
- > Make sure you have the main branch checked out
- > git pull
- > cd precept7/webcachesim-master
- > make

Trace File Form

- Request traces must be given in a space-separated format with three columns
- time long long int
- id long long int, used to uniquely identify objects
- size should be a long long int, object's size in bytes

• Example

time	id	size
1	1	120
2	2	64
3	1	120
4	3	14
4	1	120

• See test.tr

Using the Simulator*

- > ./webcachesim test.tr LRU 1000
- LRU:1000 bytes, 10492 reqs, 8495 hits, 81 hits/reqs(%)

> ./webcachesim test.tr FIF0 1000

FIF0:1000 bytes, 10492 reqs, 8206 hits, 78 hits/reqs(%)

^{*} Derived from https://github.com/dasebe/webcachesim

Experiments

- Trace data from a production CDN
 - cd1-10M.tr *
 - 10 million requests / Object sizes from 10 byte to .7GB
- LIFO and FIFO
- Vary cache sizes
- 1600000
- 32000000
- 6400000
- 128000000
- · 256000000
- · 512000000
 - 1024000000
 - 2048000000
 - 4096000000

- Create a Google Sheet
- Three columns
- SIZE LRU FIFO
- Copy results accordingly
- Select three columns to create

line chart

* Practical Bounds on Optimal Caching with Variable Object Sizes Daniel S. Berger, Nathan Beckmann, Mor Harchol-Balter. ACM SIGMETRICS, June 2018

Experiments

- LRU and FIFO
- Vary cache sizes
 - 80
 - 160
 - 320
 - 640
 - 1280
 - 2560
 - 5120

- Create a Google Sheet
- Three columns
- SIZE LRU FIFO
- Copy results accordingly
- Select three columns to create

line chart