
COS 316 Precept:
Concurrency

1



Today’s Plan

• Background on concurrency

• Key Golang mechanisms for developing concurrent 
programs (important for assignment 5)

• Will discuss additional mechanisms in the next precept



Background: Overview of Concurrency
Sequential programs:

• Single thread of control
• Subprograms / tasks - 

don’t overlap in time - 
executed one after 
another

Concurrent programs
• Multiple threads of control
• Subprograms / tasks - may 

(conceptually) overlap in time 
- (appear to be) executed at 
the same time

● Recall from lecture
○ Computer with a single processor can have multiple processes at 

once
○ OS schedules different processes - giving illusion that multiple 

processes are running simultaneously
● Note - parallel architectures can have N processes running simultaneously 

on N processors



Background: Operating System (Review)
• Allows many processes to execute concurrently
• Ensures each process’ physical address space does not 

overlap
• Ensures all processes get fair share of processor time and 

resources
• Processes can run concurrently and (context) switch 
• User's perspective: appears that processes run in parallel 

although they don't 



Background: Context Switch
• Control flow changes from one process to another

• E.g., switching from processA to processB

• Overhead:
• Before each switch OS has to save the state (context) of 

currently running process and restore it when next time its 
execution gets resumed



Background: Threads vs Processes

• Processes
• Process context switching time is long

(change of virtual address space & other resources)
• Threads

• thread is a “lightweight” process
• thread shares some of the context with other threads in a process, e.g.

• Virtual memory
• File descriptors

• Private context for each thread:
• Stack
• Data registers
• Code (PC)

• Switching between threads is faster because there is less context
– less data that has to be read/written from/to memory



Background: Why Concurrency?

• Performance gain
• Google search queries

• Application throughput 
• Throughput = amount of work that a computer can do in a given 

time period
• When one task is waiting (blocking) for I/O another  task can 

continue its execution
• Model real-world structures

• Multiple sensors
• Multiple events
• Multiple activities



Tradeoffs - Concurrent Programming
• Complex
• Error-prone
• Hard to debug



Example

Jesse AlexBank Account

100

time

Read b = 100
b = b + 10
Write b = 110 

110

Read b = 110
b = b + 10
Write b = 120 

120



Example

Jesse AlexBank Account

100

time

Read b = 100

110

Read b = 100

110

b = b + 10
Write b = 110 

b = b + 10
Write b = 110 



Go and Concurrency

• Goroutines

• The sync package - https://golang.org/pkg/sync

• sync.WaitGroup

• sync.Mutex

https://golang.org/pkg/sync


Goroutines
• A lightweight thread managed by the Go runtime
• Many goroutines execute within a single OS thread

• One goroutine is created automatically to execute the 
main()

• Other goroutines are created using the go keyword
• Order of execution depends on the Go scheduler 

• Go takes a process with main thread and schedules 
/ switches goroutines within that thread

• Compare
● Sequential Program
● https://play.golang.org/p/PLeCGtRp2QB

● Concurrent program
● https://play.golang.org/p/sDitCEr_3vX

https://play.golang.org/p/PLeCGtRp2QB
https://play.golang.org/p/sDitCEr_3vX


Goroutines - Exiting
• goroutine exits when code associated with its function 

returns
• When the main goroutine is complete, all other goroutines 

exit, even if they are not finished
• goroutines are forced to exit when main goroutine exits
• goroutine may not complete its execution because main 

completes early
• Execution order of goroutines is non-deterministic



Exercises

• Recall the exercise:
• https://play.golang.org/p/sDitCEr_3vX

• Switch the order of the calls from

go say("world") say("hello")
say("hello") go say("world")

• What happens?

• How to fix?

https://play.golang.org/p/sDitCEr_3vX


Synchronization
• Synchronization is when multiple threads agree on a 

timing of an event
• Global events whose execution is viewed by all threads, 

simultaneously
• One goroutine does not know the timing of other 

goroutines
• Synchronization can introduce some global events that 

every thread sees at the same time



Synchronization and Go
• type WaitGroup

• func (wg *WaitGroup) Add(delta int)
• func (wg *WaitGroup) Done()
• func (wg *WaitGroup) Wait()

• type Mutex
• func (m *Mutex) Lock()
• func (m *Mutex) Unlock()

• Channels
• See COS 418



WaitGroup
• Forces a goroutine to wait 

for other goroutines
• WaitGroup - a group of 

goroutines that a 
goroutine has to wait for

• A goroutine will not 
continue until all 
goroutines from 
WaitGroup finish

• Can wait on one or more 
other goroutines

• Create a WaitGroup 
var wg sync.WaitGroup

• Set the size of the WaitGroup
wg.Add(num_goroutines)

• Pass a pointer to the WaitGroup to 
each go routine
func f(wg *sync.WaitGroup)

• When goroutine completes, 
invoke Done
wg.Done()

• Invoke Wait - blocks until all 
goroutines complete
wg.Wait()



WaitGroup Exercises
Consider this program:
func doWork(id int, sec int) {

fmt.Printf("goroutine %d - entered. ", id)

fmt.Printf("Sleep for %d seconds.\n", sec)

time.Sleep(time.Duration(sec) * time.Second)

fmt.Printf("goroutine %d - exits. ", id)

     fmt.Printf("Slept for %d seconds\n", sec)

}

func main() {

rand.Seed(time.Now().UnixNano())

for i := 1; i <= 5; i++ {

go doWork(i, rand.Intn(5) + 1)

}

fmt.Println("Main goroutine exit")

}

• Run the program
    https://play.golang.org/p/nb8IJC3lyIt

• Modify the program so that each worker 
prints its:

• Enter statement
• Exit statement

https://play.golang.org/p/nb8IJC3lyIt


Mutex (Mutual Exclusion)

• Sharing variables between goroutines (concurrently) can 
cause problems 

• Two goroutines writing to the same shared variable can 
interfere with each other

• Function/goroutine is said to be concurrency-safe if can be 
executed concurrently with other goroutines without 
interfering improperly with them

• e.g., it will not alter variables in other goroutines in some 
unexpected/unintended/unsafe way



Sync.Mutex

• A mutex ensures mutual exclusion
• Uses a binary semaphore

• If flag is up → shared variable is in use by somebody 
• Only one goroutine can write into variable at a time
• Once goroutine is done with using shared variable it has to put the flag 

down
• if flag is down → shared variable is available

• If another goroutine see that flag is down it knows it can use the shared 
variable but first it has to put the flag up



Back to our example 

funcDeposit(amount) {
 
     lock balanceLock
     read balance 
     balance = balance + amount 
     write balance 
     unlock balanceLock

}

 

          
     
     
     

Jesse AlexBank Account

100

time

Read b = 100

110

Read b =  

120

b = b + 10
Write b = 110 

             = 110
b = b + 10
Write b = 120 

CRITICAL
SECTION}



Sync.Mutex
• Lock()

• Puts the flag up (if none of other goroutines 
has already put the flag up)

• Notifies others that shared variable is in use
• If second goroutine also calls Lock()it will be 

blocked, it has to wait until first goroutine 
releases the lock

• Note - any number of goroutines (not just 
two) competing to Lock()

• Unlock()
• Puts the flag down
• Notifies others that it is done with using 

shared variable
• When Unlock() is called, a blocked Lock() 

can proceed
• In general: put Lock() at the beginning of the 

critical section and call Unlock() at the end of it; 
ensures that only one goroutine will be in critical 
section region

• Create a Mutex 
var mut sync.Mutex

• To lock a critical section
mut.Lock()

• To unlock a critical section
mut.Unlock()



Mutex Exercise
Consider:
var i int = 0 

var wg sync.WaitGroup

func inc() {

   i = i + 1

   wg.Done()

}

func main() {

   wg.Add(2)

   go inc()

   go inc()

   wg.Wait()

   fmt.Println(i)

}

• Run the program
    https://play.golang.org/p/hNevYkKDp30

• Is it concurrency-safe?  Discuss.

• Consider this program
    https://play.golang.org/p/c-D5UiTmgnX

• Copy this program to your local machine - 
build and then execute multiple times

• Not different behavior than Go 
playground

• Use Lock() and Unlock() to make these 
programs concurrency-safe

https://play.golang.org/p/hNevYkKDp30
https://play.golang.org/p/c-D5UiTmgnX


Mutex Exercise - Bank Account

Jesse AlexBank Account

100

time

Read b = 100

110

Read b = 

120

b = b + 10
Write b = 110 

             = 110
b = b + 10
Write b = 120 

• Make this code concurrency-safe
    
https://go.dev/play/p/VboCb85otn0

https://go.dev/play/p/VboCb85otn0


Interesting Example
Consider:
var mu sync.Mutex

func funcA() {

    mu.Lock()

    funcB()

    mu.Unlock()

}

func funcB() {

    mu.Lock()

    fmt.Println("Hello, World")

    mu.Unlock()

}

func main() {

    funcA()

}

• Run the program
    https://play.golang.org/p/c2Qgo-W_4mP

• Discuss.

https://play.golang.org/p/c2Qgo-W_4mP


Next Week - Dining Philosophers



References

Derived from:
http://www.bojankomazec.com/2019/02/concurrency-in-go-notes-on-coursera.html

http://www.bojankomazec.com/2019/02/concurrency-in-go-notes-on-coursera.html

