COS 316 Precept:
Concurrency

Today's Plan

Background on concurrency

Key Golang mechanisms for developing concurrent

programs (important for assignment 5)
Will discuss additional mechanisms in the next precept

Background: Overview of Concurrency

Sequential programs: Concurrent programs
Single thread of control . Multiple threads of control
Subprograms / tasks - . Subprograms / tasks - may
don't overlap in time - (conceptually) overlap in time
executed one after - (appear to be) executed at
another the same time

Recall from lecture
o Computer with a single processor can have multiple processes at
once
o OS schedules different processes - giving illusion that multiple
processes are running simultaneously
Note - parallel architectures can have N processes running simultaneously
on N processors

Background: Operating System (Review)

. Allows many processes to execute concurrently
Ensures each process’ physical address space does not
overlap

Ensures all processes get fair share of processor time and
resources

Processes can run concurrently and (context) switch

User's perspective: appears that processes run in parallel
although they don't

Background: Context Switch

Control flow changes from one process to another
E.g., switching from processA to processB

Overhead:
Before each switch OS has to save the state (context) of
currently running process and restore it when next time its
execution gets resumed

Background: Threads vs Processes

Processes
* Process context switching time is long
(change of virtual address space & other resources)
Threads
« thread is a “lightweight” process
+ thread shares some of the context with other threads in a process, e.g.
 Virtual memory
 File descriptors
Private context for each thread:
« Stack
» Dataregisters
« Code (PQ)
Switching between threads is faster because there is less context
- less data that has to be read/written from/to memory

Background: Why Concurrency?

Performance gain
Google search queries

Application throughput
Throughput = amount of work that a computer can do in a given
time period
When one task is waiting (blocking) for I/0 another task can
continue its execution

Model real-world structures
Multiple sensors
Multiple events
Multiple activities

Tradeoffs - Concurrent Programming

. Complex
. Error-prone
. Hard to debug

Example

Jesse —— Bank Account Alex
Read b =100 100
b=b+10
Write b = 110
110
Read b =110
b=b+10
Write b = 120
120

time

Example

Jesse —— Bank Account Alex
Read b =100 100
Read b =100
b=b+10
Write b = 110 110
b=b+10
110 Write b =110

time

Go and Concurrency

. Goroutines

- The sync package - https://golang.org/pkg/sync

- sync.WaitGroup

- sync.Mutex

https://golang.org/pkg/sync

Goroutines

« Alightweight thread managed by the Go runtime
« Many goroutines execute within a single OS thread

« One goroutine is created automatically to execute the
main()
» Other goroutines are created using the go keyword

« Order of execution depends on the Go scheduler
* @Go takes a process with main thread and schedules
/ switches goroutines within that thread

« Compare

e Sequential Program e Concurrent program
e https://play.golang.org/p/PLeCGtRp2QB e https://play.golang.org/p/sDitCEr 3vX

https://play.golang.org/p/PLeCGtRp2QB
https://play.golang.org/p/sDitCEr_3vX

Goroutines - Exiting

goroutine exits when code associated with its function
returns

When the main goroutine is complete, all other goroutines
exit, even if they are not finished

goroutines are forced to exit when main goroutine exits
goroutine may not complete its execution because main
completes early

Execution order of goroutines is non-deterministic

Exercises

. Recall the exercise:

« https://play.golang.org/p/sDitCEr 3vX

« Switch the order of the calls from

go say("world") say("hello")
say("hello") go say("world")

What happens?

« How to fix?

https://play.golang.org/p/sDitCEr_3vX

Synchronization

Synchronization is when multiple threads agree on a
timing of an event

Global events whose execution is viewed by all threads,
simultaneously

One goroutine does not know the timing of other
goroutines

Synchronization can introduce some global events that
every thread sees at the same time

Synchronization and Go

type WaitGroup
func (wg *WaitGroup) Add(delta 1int)
func (wg *WaitGroup) Done()
func (wg *WaitGroup) Wait()

type Mutex
func (m *Mutex) Lock()
func (m *xMutex) Unlock()

Channels
See COS 418

WaitGroup

Forces a goroutine to wait
for other goroutines
WaitGroup - a group of
goroutines that a
goroutine has to wait for
A goroutine will not
continue until all
goroutines from
WaitGroup finish

Can wait on one or more
other goroutines

Create a WaitGroup

var wg sync.WaitGroup
Set the size of the WaitGroup

wg.Add (num_goroutines)

Pass a pointer to the WaitGroup to
each go routine

func f(wg *sync.WaitGroup)
When goroutine completes,
invoke Done

wg.Done ()

Invoke Wait - blocks until all
goroutines complete

wg.Wait()

WaitGroup Exercises

Consider this program:
func doWork(id int, sec int) {

fmt.Printf("goroutine %d - entered. ", 1id)
fmt.Printf("Sleep for %d seconds.\n", sec)
time.Sleep(time.Duration(sec) * time.Second)
fmt.Printf("goroutine %d - exits. ", 1id)
fmt.Printf("Slept for %d seconds\n", sec)
}
func main() {
rand.Seed(time.Now() .UnixNano())
for i := 1; i <= 5; i++ {
go doWork(i, rand.Intn(5) + 1)
}

fmt.Println("Main goroutine exit")

- Run the program

https://play.golang.org/p/nb81]C3lylit

* Modify the program so that each worker
prints its:
+ Enter statement
+ Exit statement

https://play.golang.org/p/nb8IJC3lyIt

Mutex (Mutual Exclusion)

Sharing variables between goroutines (concurrently) can
cause problems

Two goroutines writing to the same shared variable can
interfere with each other

Function/goroutine is said to be concurrency-safe if can be
executed concurrently with other goroutines without

interfering improperly with them

e.g., it will not alter variables in other goroutines in some
unexpected/unintended/unsafe way

Sync.Mutex

A mutex ensures mutual exclusion
Uses a binary semaphore

« Ifflagis up — shared variable is in use by somebody
Only one goroutine can write into variable at a time

Once goroutine is done with using shared variable it has to put the flag
down

 if flag is down — shared variable is available

If another goroutine see that flag is down it knows it can use the shared
variable but first it has to put the flag up

Back to our example

Jesse — Bank Account — Alex
Read b =100 100
Read b =
b=b+10
Write b = 110 110
=110
b=b+10
120 Write b = 120

time

func Deposit(amount) {

lock balancelock

read balance

balance = balance + amount
write balance

unlock balancelock

CRITICAL
SECTION

Sync.Mutex

Lock()

« Puts the flag up (if none of other goroutines
has already put the flag up)

Notifies others that shared variable is in use

« If second goroutine also calls Lock ()it will be
blocked, it has to wait until first goroutine
releases the lock

« Note - any number of goroutines (not just
two) competing to Lock ()

Unlock()
» Puts the flag down

Notifies others that it is done with using
shared variable

« When Unlock() is called, a blocked Lock ()
can proceed

In general: put Lock () at the beginning of the
critical section and call Unlock () at the end of it;
ensures that only one goroutine will be in critical
section region

Create a Mutex
var mut sync.Mutex

To lock a critical section
mut.Lock()

To unlock a critical section
mut.Unlock()

Mutex Exercise

Consider:

var i int = 0

var wg sync.WaitGroup

func inc() {
i=1+1
wg.Done ()

¥

func main() {
wg.Add (2)
go 1inc()
go 1inc()
wg.Wait()
fmt.Println(i)

Run the program
https://play.golang.org/p/hNevYkKDp30

Is it concurrency-safe? Discuss.

Consider this program
https://play.golang.org/p/c-D5UiTmgnX

Copy this program to your local machine -
build and then execute multiple times
» Not different behavior than Go
playground

Use Lock() and Unlock() to make these
programs concurrency-safe

https://play.golang.org/p/hNevYkKDp30
https://play.golang.org/p/c-D5UiTmgnX

Mutex Exercise - Bank Account

Jesse — Bank Account — Alex
Read b =100 100
Read b =
b=b+10
Write b = 110 110
=110
b=b+10
120 Write b = 120

- Make this code concurrency-safe

https://go.dev/play/p/VboCb850tn0

https://go.dev/play/p/VboCb85otn0

Interesting Example

Consider:

var mu sync.Mutex

func funcA() {

* Run the program
https://play.golang.org/p/c2Qgo-W 4mP

mu.Lock()
funcB () * Discuss.
mu.Unlock()
}
func funcB() {
mu.Lock()
fmt.Println("Hello, World")
mu.Unlock()
}
func main() {

funcA()

https://play.golang.org/p/c2Qgo-W_4mP

Next Week - Dining Philosophers

References

Derived from:

http://www.bojankomazec.com/2019/02/concurrency-in-go-notes-on-coursera.html

http://www.bojankomazec.com/2019/02/concurrency-in-go-notes-on-coursera.html

