
COS 316
Precept:

Concurrency
Part 2

1

Precept Objectives

● Review Go concurrency concepts (needed for
“connection pool” assignment)

● Gain more practice with Go and concurrency concepts
○ RWMutex
○ Condition Variables:

■ sync.L.Lock and sync.L.Unlock
■ sync.Cond and Signal, Wait, Broadcast

● Understand the Dining Philosophers problem

2

Review Mutexes

● Consider the following example

https://play.golang.org/p/LAfTM5gO-EJ

3

https://play.golang.org/p/LAfTM5gO-EJ

RWMutex

● An RWMutex - a reader+writer mutual exclusion lock.
● For an addressable RWMutex value mu (mu sync.RWMutex)

○ data writers
■ acquire the write lock of mu through mu.Lock() method calls
■ release the write lock of mu through mu.Unlock

○ data readers
■ acquire the read lock of mu through mu.RLock() method calls.
■ release the read lock of mu through mu.RUnlock

● Why do we want different types of locks for writing vs
reading?

● Modify the example (from previous slide) to use RWMutex

4

https://golang.org/pkg/sync/#RWMutex

Notifications

● sync.Mutex and sync.RWMutex values
can also be used to implement
notifications
○ Note - not recommended - for

illustrative purposes only!
● What gets printed first? Why?

● https://play.golang.org/p/cw_os3bQfAG

func main() {
var mu sync.Mutex
mu.Lock()
go func() {

time.Sleep(time.Second)
fmt.Println("COS")
mu.Unlock()

}()
mu.Lock()
fmt.Println("316")

}

5

https://play.golang.org/p/cw_os3bQfAG

Condition Variables - sync.Cond
● sync.Cond type - provides an efficient way to send

notifications among goroutines

● sync.Cond value holds a sync.Locker field with name L
- field value is of type *sync.Mutex or *sync.RWMutex
○ E.g.:

■ cond := sync.NewCond(&sync.Mutex{})
■ cond.L.Lock()
■ cond.L.UnLock()

● sync.Cond value holds a FIFO queue of waiting
goroutines

● commonly used to allow threads to wait on a condition to
be true: consumers wait until a producer signals that
something happened

L Mutex or
RWMutex

6

https://golang.org/pkg/sync/#Cond
https://golang.org/pkg/sync/#Locker

Condition Variables - L.Lock(), L.Unlock(),
Wait(), Broadcast(), Signal()

● cond := sync.NewCond(&sync.Mutex{})

● cond.L.Lock()
● cond.Wait()

● cond.Broadcast()

● cond.Signal()

● Call L.Lock() before
Wait()

● Insert calling goroutine in
queue and block (wait)

● Calls L.Unlock()

Unblock all the goroutines in
(and remove them from) the
waiting goroutine queue

● Blocked routines go back to
running state

● Invokes cond.L.Lock() (in the
resumed cond.Wait() call) to
try to acquire and hold the
lock cond.L again

● cond.Wait() call exits after the
cond.L.Lock() call returns

Unblock the head goroutine in
(and remove them from) the
waiting goroutine queue

7

Condition Variables - Example

● Review the following example

● https://go.dev/play/p/8Am51UxjSVS

8

https://go.dev/play/p/8Am51UxjSVS

sync.Cond - Always Check the Condition!

● Why is this loop here?

● cond.Wait() does not guarantee
the condition holds when it returns

● The condition could have been made
false again while the goroutine was
waiting to run

● Always check the condition, and keep
waiting if it does not hold

checkCondition := func() bool {
 // Check the condition
}

for !checkCondition() {
 cond.Wait()
}
cond.L.Unlock()

9

Dining Philosophers
0

1

2

4

3

● Classic problem that illustrates
issues related to synchronization

● Models concept of multiple
processes competing for limited
resources

● Formulated by E.W. Dijkstra
● Framework:

○ Five philosophers seated at a
table

○ Infinite cycle of thinking and
eating

○ Philosopher must pick up both
forks in order to eat

○ Determine policy / algorithm so
that each philosopher gets to
eat and does not starve

10

Dining Philosophers Policy
● The philosophers require a shared policy that can

be applied concurrently
● The philosophers are hungry! The policy should let

everyone everyone eat (eventually)
● The philosophers are utterly dedicated to the

proposition of equality: the policy should be
totally fair

● Discuss - what can go wrong?
11

Dining Philosophers - Solution 1
type Philosopher struct {

name string // name of philosopher

left int // fork number on the left

right int // fork number on the right

}

func (p *Philosopher) Dine(table []sync.Mutex) {

for {

p.Think()

table[p.left].Lock()

table[p.right].Lock()

p.Eat()

table[p.right].Unlock()

table[p.left].Unlock()

}

}

func main() {

 philosophers := []*Philosopher{

&Philosopher{"Michelle", 0, 1},

&Philosopher{"Bill", 1, 2},

&Philosopher{"Sonia", 2, 3},

&Philosopher{"Brooke", 3, 4},

&Philosopher{"Eric", 4, 0},

}

table := make([]sync.Mutex, len(philosophers))

for _, philosopher := range philosophers {

go func(p *Philosopher) {

p.Dine(table)

}(philosopher)

}

}

12

Solution 1 - Demonstration

● Run the program:
○ https://play.golang.org/p/bV0JhIhN9lt

● Notes
○ Math.rand does not produce random numbers

on the the playground
○ Try running locally (copy and paste)

13

https://play.golang.org/p/bV0JhIhN9lt

4 Necessary Conditions for Deadlock

● Mutual Exclusion
● Hold and wait
● No preemption
● Circular wait

14

Solution to Problem

➢ Dijkstra
○ Number the resources (forks) from 0 to 4
○ Process (philosopher) will always pick up the lower-numbered

fork first, and then the higher-numbered fork

➢ Are there any problems with this approach?

15

References

https://go101.org/article/concurrent-synchronization-more.html

https://en.wikipedia.org/wiki/Dining_philosophers_problem#Resource_hierarchy_solution

16

https://go101.org/article/concurrent-synchronization-more.html
https://en.wikipedia.org/wiki/Dining_philosophers_problem#Resource_hierarchy_solution

